E-Tree Plus

By EllTech Development, Inc.

4374 Shallowford Industrial Parkway
Marietta, GA 30066

Technical Support: (404) 928-8960 9am - Spm M-F T OAJ)/
Sales: (800) 553-1327
BBS: (404) 928-7111 (HST)

FAY : 404 924 -2807

Documentation Revision Date: 10/91

Software and documentation
(C) Copyright 1991 EllTech Development, Inc.
All rights reserved.

All tradomarks belang to their respective owners

Table of Contents

1 - Quick Start eeetecaneenaeensiaeans ceecerrteceens 1
Section 2 - Introductioncoeveeiienacnanes cerseserasans 3
A. Product Description cerenens cesasennnne 3
B. Compatible Compilers........... cererrsesens seeessees 3
C. System Requirements cerersseenees vesseses 3
D. Product Registration Cesecesreensnnanes ceees 4
E. Technical Supportcccceeniiernen ceetecesrtananaa 4
F. Memory Requirements teossssesesireenrae |
Section 3 - Getting Started RPN cvrennaass 1
A.Making Backup Copiescoviiinnneees ceevees 1
B.Installationoovieieeeennnes ceseanss ceresreaes eee 1
Section 4 - Using E-Tree Plus cereees tesscessrsrans 9
A. General Informationcccvnvveen. cesesrcenesss 9
B. Procedure Organization cesresesavasanaanae ceseees 9
C.Glossaryof Termscccooevvvnnes ceetrinsaes eee 11
D. Introduction to File and Record Locking ceeees 12
E. Data Types Supported By E-Tree Plus 17
F. Putting E-Tree Plus to Work cesenes cerenene . 18
1.Creating aDatabaseccoviiiiiiiiininianinnns 19
2. Creating Indexesocvviiiiiiiniiiiniinieinrasons 19
3. Inserting, Updating, and Deleting Records 20
4. Navigating Through the Database 20
5.Pseudocode Examplesciiiiiiiiiniinineiians 21
G. Variable-length Fieldsccovvieerennnns cees 22

H. Opening More than Four E-Tree Files
Simultaneouslycccivivirienscarsrcennns ceveene 23
L E-Tree Database VersionIDc0000.. ceraeenes 24
J. Error Codes Generated by E-Tree Routines 25

EliTech Development, Inc.

Section § - Manipulating Databases With EUTIL.EXE.......... 26

Section 6 - Routine Referenceccciviviinernnnnncees . 28
A. User-Level Routinescevvvvennan ceasenes eees 28
B. High Level Routinesccovviieeesecccaaronnns . 69
C. Library Support Routines ceresienes 82
D. Low-Level Support Routinescce000eennne . 108
E. Routine Organization cessrssessscessss 108

Section 7 - The Nitty-Grittycco0vevseeenecnssrccssns 112
A.General Informationcccciivvnnnennnes eees 112
B.Low-Level Lockscov00evevens ceseennse teseens 112
C. Global Data Used Internally by E-Tree Procedures 115
D. E-Tree Plus Database Structureccoconvveeesces 118

I.HeaderPagecccivenrinionenncnnnnnannes 119
2.Fixed-LengthDataPagecccvviiinnennnnn 121
3. Variable-Length DataPagecc0iennennnn 121
4. Index Pagescciiveiiiniiiiiiiiieiiiiiiiiins 122
5. Key DefinitionPagecovviiiiiiniiina 123
6. Field InformationPagecccivviiiieaan, 124
T.Free Pagesccvvirieiinneiivninnnessnnnnocionens 125
E.B+TreeIndexescccconeivececsaoccccsasnss ... 125
LBHTIEES . .vveeeeeeenieneenennnneeeeerinneeeenens 125
2. Complete E-Tree Constraints and Definitions: 127
3. Insertion intothe B+Treecovvivereininnnnnenn 128
4, Deleting fromthe B4Treecovviiinnnnnnn, 129
5. NOLES ...ttt et 130
6. Pseudocode Examplescovviieiiiiniiiann. 131
7. Subroutine Algorithmscovieiiiieenineenss 134
8. IntermalNodeccoiiiiiiiiiiiiiiiiiinenn, 135
9. Leaf NOdEocvvvinivneinnerinnienninnecinnaans 136
10. Duplicates Nodecciiiiiiiiiiiiennes 136

Table of Contents

Appendix A - Differences Between E-Tree, Btrieve and

PDSISAM Ceeereacetiieitienans cessasresina 137
Appendix B - Routine Syntax Summary terecanas ceeses . 141
Appendix C -Error Codesccvvenne ceessrssssanes 143

Appendix D - Using E-Tree Plus With QuickBASIC /PDS 149

A. Files Distributed with E-Tree Plus erereennans . 149
B. Procedure Declarationsoiuvuse ereess 150
C. Using PDS's "Far String" Option ceesannes 151
D. Building QuickLibraries N 151
E. Building LINK Libraries cetirnersenens 151
F. Combining Libraries from other Products 152
G. Building Extended Runtime Libraries 153
H. Compiling and LINKingocveveeinnnn. cesss 155
I. Using E-Tree in Programs that CHAIN and SHELL 156
J. Running the Example Programs eeses 157
K. Example Program Listing teeeonse cesesns 157
Appendix E - Converting PDS ISAM Code to E-Tree 163
T T .. 175

Quick Start

Section 1
Quick Start

Although we recommend that all E-Tree Plus users review this entire manual
(cxcept for Section 7) before attempting to use the product, it is not entirely
necessary for those who have experience with Btrieve or PDS ISAM. If you
fall into this category and would like to "jump right in," we suggest that you
follow the guidelines set forth below:

® Review Section 2, "Introduction” and Section 3, "Getting Started"
for an overview of the documentation organization and
installation instructions.
\

= If you will be designing a network database program where more
than one user can simultaneously access your database files,
please review Section 4(D), " Introduction to File and Record
Locking" for an overview of these fundamental and essential
network programming concepts.

= And finally, load and run one or more of the example programs.
They are well commented and designed to help you see how the
E-Tree Plus routines are used in your BASIC programs. You will
gain the most from this exercise if you run them in the
"step-trace” mode available in your compiler's interactive
development environment ("IDE"). Refer to the appendix in this
manual that applies to your compiler for specific instructions on
loading and running the example programs,

® If you are familiar with Birieve, Appendix A, "Differences
Between E-Tree, PDS ISAM, and Btricve" will be helpful to you.
This section contains a table which describes each of the Birieve
functions and the E-Tree equivalents.

= If you are familiar with PDS ISAM, Appendix E, "Converting
PDS ISAM Code to E-Tree" will be of particular interest to you.

All of the routines available in this product are categorized and listed
alphabetically in Section 6, "Routine Reference.” For detailed information
about the routines used in the demonstration programs, please refer 10 section
7(A), "User-Level Routines."

Introduction

Section 2
Introduction

2 (A) Product Description

Welcome to the E-Tree Plus Library! We have put every effort into making
this one of the finest database management products available to BASIC
programmers.

E-Tree Plus was designed to function on single-user and multi-user
"networking” platforms. Although there are numerous complexities involved in
securely sharing data files on a network, most of the hard work (i.e. low-level
record locking) is handled for you automatically by E-Tree Plus. You need
only to specify the type of lock (if any) you wish to place on a record that is
being inserted, updated, or retrieved. More information about specific types of
record locks can be found in Section 4 (D), "Introduction to File and Record
Locking." Additionally, if you write your program for a network environment,
it will also function properly on a single-user system with no additional work
required by you. E-Tree Plus automatically detects the presence (or lack) of a
Novell or Microsoft compatible network and handles file and record locking
requests appropriately.

E-Tree Plus's memory, file and record locking routines automatically detect
potentially dangerous situations, such a exiting your program without
unlocking all records and handle it for you automatically. Upon program
termination, locks are released, all files are closed and all memory in use by
E-Tree routines is released.

2 (B) Compatible Compilers

E-Tree Plus is compatible with Microsoft QuickBASIC versions 4.00b and
4.50, Microsoft BASIC Compiler 6.x and Microsoft BASIC Professional
Development System 7.x (AKA "PDS").

2 (C) System Requirements

During sofiware development, E-Trce Plus requires one of the compilers
mentioned in Section 2(B), a hard disk with at least 1.5 megabytes of available
space, and DOS version 2.1 or later. At runtime, the E-Tree Plus sofiware

3

EliTech Development, Inc.

requires DOS 2.1 or later on single-user platforms or DOS 3.1 or later on
multi-user or networking platforms.

2 (D) Product Registration

If E-Tree Plus was purchased directly from EllTech Development, it has
already been registered to the person who bought it. If it was purchased
through a dealer, a product registration card can be found in the diskette
envelope. Please fill it out and return it to us immediately. We will be able to
provide technical support only to registered users.

2 (E) Technical Support

EllTech Development provides free, full-lime technical support to all
registered users of E-Tree Plus. Our hours are Monday thru Friday, 9:00am to
5:00pm Eastern time. You can reach us at (404) 928-8960.

Or if you prefer, call our 24 hour bulletin board system ("BBS"). We run
PCBoard BBS software and a U.S. Robotics Courier HST modem (supporting
baud rates from 1200 to 38400). We have a dedicated message base for E-Tree
Plus as well as the latest version of the product available for download. Many
times you carn get an answer to your lech support question by calling our BBS
and scanning messages. If you've run into a snag, the chances are preity good
that others have had a similar problem and a solution already awaits you.

As a registered user of E-Tree Plus, you already have an account established on
the BBS as well as access to the private E-Tree conference. Log on using the
name that appears on your invoice (no middle initials). Your password is your
Zip or Postal code. Be sure to use the BBS's "W" command to change your
password (for security reasons) during your first session.

Here are some phone numbers you'll need to know:
® (404) 928-8960 Technical Support

= (404) 928-7111 EllTech Development's BBS
B (404) 924-3351 Fax

Introduction

2 (F) Memory Requirements

Depending on various factors, E-Tree Plus ¢an add between 60K and 100K to
the size of your .EXE file or extended runtime library (RTM). When you open
the first E-Tree database file, memory is allocated for file 1/O buffers and for
an internal "scratch pad." The amount of memory allocated is dependent on the
file page size (discussed later in this manual) and the record length (between
2K and 128K). Part of this memory will be allocated from expanded memory
(EMS) if an expanded memory manager is installed in the system and if
sufficient EMS memory is available.

Getting Started

Section 3
Getting Started

3 (A) Making Backup Copies

Before installing E-Tree Plus for the first time, be sure to make a backup copy
of the distribution diskette(s) for safe keeping. The DOS "DISKCOPY™
command is best suited for this purpose. If you require any help using
DISKCOPY, please refer to your DOS reference manual.

3 (B) Installation

To install E-Tree Plus on your hard disk drive, insert the distribution diskette
into the appropriate floppy disk drive and close the latch. Log onto that floppy
drive by typing the drive letter followed by a colon and press <Enter>. Next,
you'll need to run the "INSTALL.BAT" program. This will decompress and
copy the appropriate files to the specified subdirectory on your hard drive.
Once that has been accomplished, the appropriate libraries will be constructed
for you automatically. Be sure that the programs BC.EXE, LINK.EXE and
LIB.EXE are in your DOS PATH. Also, the drive and directory where your
BASIC support libraries are located must be indicated by the "LIB"
environment variable. To set the LIB environment variable, type the following
at the DOS prompt, or add it to your AUTOEXEC.BAT file:

SET LIB = C:\BASIC\LIB;C:\ETREE;

The above example lists two directories where the LINK program will search
automatically for .OBJ and .LIB files, Each drive and directory entry is

delimited with a semicolon ";".
The syntax for INSTALL is as follows:

INSTALL Drive:\Directory [Switch)

Where :
Drive:\ is the letter of the hard drive where you wish to install E-Tree.

Directory is the name of the subdirectory in which you wish to install the
E-Tree files.

EllTech Development, Inc.

Switch is a command line switch that indicates the comipiler that you'll be
using with E-Trec. The default (no switch) is Microsoft PDS. The other
switch is:

R for QuickBASIC 4.00b, 4.50, and Microsoft BASIC 6.x

For example, 1o install E-Tree for QuickBASIC 4.5 in C:\ETREE, you would
type in the following at the DOS prompt:

INSTALL C:\ETREE /Q
To install E-Tree for Microsoft PDS, you would type the following:
INSTALL C:\ETREE

To get a summary of the above information, type "INSTALL" without any
command line arguments.

Using E-Tree Plus

Section 4
Using E-Tree Plus

4 (A) General Information

Every possible effort has been made to ensure that the routines provided in the
E-Tree Plus Library are as easy and intuitive to use as possible. In designing
any library of routines there are the inevitable trade-offs between simplicity
and flexibility, and between functionality and data security. More often than
not we will err toward flexibility and data security and will take data security
over flexibility if necessary.

Much of the syntax and the implementations of the routines provided are
driven by the need 1o assume the product will be used to manipulate databases
in networked environments. The impact of these assumptions on the users who
will be working strictly in non-networked situations has been mitigated as
much as possible, but is unavoidable.

At every step in every function the assumption must be made, by us and by you
when you design your programs, that access to each piece of data stored in a
file is desired by more than one process at any given time. This assumption
increases the quantity of code required for error avoidance, error detection, and
error recovery by at least an order of magnitude over similar code intended for
a strictly single-user application. It also forces several additional arguments on
many of the functions in order to provide flexible but secure record locking
mechanisms. For the vast majority of programs this added complexity is
hidden in the lower-level functions. Using the E-Tree Plus Library, you can
create fully functional, multi-user, database applications without ever explicitly
setting or releasing a data-record lock.

4 (B) Procedure Organization

All the routines in the E-Tree Plus Library are grouped according to how likely
it is that you will need to use them directly. The routines you will use most
often are called "User-Level routines.” The ones you will have little need to
use directly are call "Low-Level routines.” In between there are "High-Level”
and "Middle-Level" routines which you might find convenient to use in special
circumstances, but which you should avoid if you can. We have attempted to
keep much of the call-syntax complexity in the lower level routines and to
keep the most frequently used routines as simple to use as possible. The higher

EliTech Development, Inc.

level routines are much safer for you to use becauge they perform many more
checks on the correctness of the arguments you have supplied and on whether
the current state of the database is appropriate for the function you are
requesting. By providing full source code and documentation for all of the
routines used in the library, we give you the choice of using the low-level
routines if you nced them. However, most applications needing database
management tools can be written using only the simple, User-Level routines.

A breakdown of the various E-Tree routines and the source module in which
they can be found is in Section 6(E).

User-Level routines are those that will be used the most in the normal database
manipulations. These include routines to Create, Open, Read, Write, and
Search the database , and routines to move from one record to another.

High-Level routines are those that report on the state of a database and provide
access to the data and file structures used (0 maintain a database. In general
the data structures they access and report on should not be manipulated
directly.

Middle-Level routines are usually called by the User-Level and High-Level
routines in support of their work. These are routines that would be used
directly only in special cases where a more direct access to the database
structures is needed. You will not need to use these routines for most
programs, but they are here if you need them.)

Low-Level routines provide direct, and usually dangerous access to the dala
and files structures of the database. Use of these routines is not recommended,
but they are here for those who like to live on the edge.

There are also numerous general purpose routines included and fully
documented that are not specific to the E-Tree Plus Library. These include file
1/0 routines, memory management routines, network access routines, and
miscellaneous support routines. These routines are used by the E-Tree Plus
Library and should not be modified. They are also available for use in any
programs you wrile,

In general you should use the highest level function that accomplishes the task
you need. The higher level functions will provide more data validation and
error avoidance than the lower level functions. The extra protection is left at
the higher levels to reduce redundant error checking, minimize the code size,
and increase performance. For example, to read a data record you could get
the address of the current record, convert it to the physical location in the file,

10

Using E-Tree Plus

and read the data record directly; however, using EtRetrieve is much safer,
probably faster, and certainly easier.

4 (C) Glossary of Terms

Here are some words and phrases that you will be seeing a lot of in this manual
along with explanations of what we mean when we use them. We have tried to
keep with the common usage of all our buzzwords and catch phrases, and when
we haven't we have at least tried to be consistent.

Data Dictionary
Contains the all of the information that describes the database and index
structures. This includes the record definition and the index key definitions.

Database
A single file that contains data, indexes, and other information.

Field
The smallest unit of data the database can understand. Each record contains
one or more fields. PDS ISAM uses the term "column" to describe a field.

Fixed-Length Data
Part of the data record made up of zero or more fields that always have a
defined, unchanging length and are stored together in the database. If the
record is defined as having only a portion, the fixed-length portion will have
zero data ficlds, but will still exist to allow management of the data.

Hard-Lock
A lock placed using the operating system. This type of lock denies all access
to the file in whole or in part.

Index Key Definition
A definition of how to sort the data stored in the records. Each index has one
key definition.

Index Key
The result of applying the Index Key Definition to a particular data record to
get information used to sort the data.

Index
A pant of the database that is used to allow the data to be accessed in a
defined, sorted order. There can be several indexes for a database.

1

EliTech Development, Inc.

Lock
A control placed on a file or part of a file that limils access to the data by
other programs.

Record Definition
A definition of cach ficld in the data record that describes the type of data in
the field, the location of the field in the record, the length of the field, and the
V name of the field.

Record
A unit of data stored in the database. The database is made of records;
records are made of fields.

Segments
All or part of one or more fields which are combined to from a single index.

Semaphore .
A signal (like semaphore flags) usually used in E-Tree Plus to indicate a
soft-lock.

Soft-Lock
A lock placed using a semaphore. This type lock is a marker in the file itself
that signals other programs that the file or pan of the file is currently
read-only and should not be modified. This type of lock actually allows other
programs to read or write the file. All programs accessing files that use
soft-locks should check and honor the soft-lock.

Data
Part of the data record that can vary in length.

4 (D) Introduction to File and Record Locking

Creating applications that will be used in a network environment means having
to share resources with other applications. Luckily, sharing hardware
resources, like printers and physical access to disk drives, is usually handled by
the network operating system. Sharing file space is usually handled by a
cooperative effort between the operating system and the applications that need
access 1o the files.

The operating system provides methods of controlling access to all or parts of a
file through file and record locking mechanisms. Applications that need to
restrict access to a file use the locking functions provided by the operating
system to gain access to a file and to limit other applications’ access to the file.

12

—

Using E-Tree Plus

Applications can also control access 10 files by following a predefined set of
rules (called a protocol) that strictly défines the conditions under which it is
safe to read or write to portion of a file. Using a method other than the
functions provided by the operating system is usually required if the types of
access control provided by the operating system are incomplete or do not
provide as much flexibility as you warit.

There are three types of access that ar¢ important for sharing database files
between applications on a network:

® Shared (Deny None) - no limit is placed on when or who reads the
file or file region.

B Read-Only (Deny Write) - other applications can read from, but
cannot write to, the file or file region.

® Exclusive (Deny All) - other applications are denied all access to
the file or file region.

The E-Tree Plus Library uses a combination of operating system functions and
application protocols to provide all three types of file access control. We have
tried to hide as much of the complexity of the file access as possible.

However, it is impossible for us to know exactly what amount of control you
will need in every situation. If it were possible for us to determine your every
intention when you write your programs, we would hide all the locking actions
away so you would not have to bother with it (we would also be making lots of
money with our mind reading program).

It turns out that there are only four locking conditions that are needed to
control access to data records in most applications:

® No locking needed for the current operation

® ock during the current operation, unlock when it is done

® Lock during the current operation and leave locked for further
processing

B [ock is already in place from previous work, unlock when the
current operation is completed

Only two of these four conditions place locks on parts of the file. We need
variations on those to determine the action to take if the lock fails (because
someone else already has that part of the file locked). In any operation where a
lock is placed, a lock collision is possible. A lock collision occurs when one
application locks part of a file and then a se¢ond application attempts to lock
the same region of the file, too. The lock for the second application will fail.

13

EliTech Development, Inc.

The second application will want to either retry the lock for a short time to see
if it is released or it will want to simply wait until the lock is released
regardless of how long it takes (both cases must allow user intervention, but
that's a side issue right now).

Examples of whether to use a timeout delay or to retry the lock without a time
limit are:

® When reading a data record just to display it, and
® When reading a data record during the processing of a report.

In the first case, you do not want the program to be delayed so long that the
user thinks there is a problem and you do hot want to keep the user from doing
useful work just because one record is locked. If the particular record they
want to view is locked, their time will be better spent working on another
record until that one is free. When a report is running, however, you probably
want the program to simply wait for a locked record to be released and then
continue with the report instead of quitting every lime it finds a record locked.

Adding these timeout considerations to the list brings the number of possible
locking conditions to six:

® No locking needed for the current operation

8 Lock during the current operation, unlock when it is done -- lock
attempt times out after X seconds

B Lock during the current operation and leave locked for further
processing -- lock attempt tithes out after X seconds

® Lock during the current operation, unlock when it is done -- lock
attempt will wait until record is available

® Lock during the current operation and leave locked for further
processing -- lock attempt will wait until record is available

® Lock is already in place from previous work, unlock when the
current operation is completed

The E-Tree Plus routines Etlnsert, EtUpdate and EtRetrieve require you to
specify a lock type using a separate parameter in the CALL syntax to indicate
the desired lock type. This "LockFlag%" parameier can have a value ranging
from 0 10 § to indicate:

14

Using E-Tree Plus

0) No locks needed /'t ;
1) Lock to access record, unlock when finjshed (system timeout)

2) Lock to access record, leave locked timeout)
3) Lock to access record, unlock when finished (hﬁ%‘?ﬂc timeout)
4) Lock to access record, leave locked (iaffitite timeout)
5) Assume the record is locked, unlock it when finished

All E-Tree Plus locks can be placed and released without requiring an explicit
call to a lock or unlock routine. For instance, a lock can be placed when
ERetrieve() is used to read a record (LockFlag% = 2 or 4) and then released
with EtUpdate() afier the record is edited (LockFlag% = 5).

We chose this method of defining the lock actions because it provides a
consistent method regardless of whether the lock is a hard lock or a soft lock,
and because it allows you to place and release locks more efficiently. Most of
the locks placed on parts of a file will be on the data records. Locking and
unlocking a data record require the page the data is on be read (or at least part
of it). Putting the work of locking and unlocking inside routines that are
already accessing the data reduces the number of file accesses required.

Along with knowing what locking conditions are likely, you need to know how
to use them in your applications. There are a few simple guidelines to follow
in your applications:

® Always lock a record before reading or wriling it to be certain you
are allowed access to it.

= Don't keep records locked any longer than necessary.

® Any lock placed must be released

Examples of Using Locks

Reading data just to display it is the simplest operation in any application in
terms of the locking requirements. All that is required is for the data to be
available (not hard-locked by someone else). To make sure you can access the
data, you must lock it before you read. Since you are not going to be making
any changes (o the data, you don't want to leave it locked. This is probably a
time when you want fairly quick response. If there is a lock collision, the
program should not sit and wait forever for it to be resolved. Use LockFlag%
=1 1o Lock/Unlock the record using the system timeout.

LockFlagk =1
Call EtRetrieve(... LockFlagt ...)

15

EllTech Development, Inc.

Processing a report on many records in the database is the second easiest
lock situation. 1t is almost exactly like the previous one except you don't wani
the report to be interrupted because of a lock coitision. Use LockFlag% =3 to
Lock / UnLock the record using an infinite timeout.

LockFlagh = 3
Call EtRetrleve(... LockFlag¥% ...)

Reading a record to edit and update [s a little trickier because you definitely
do not want to stop editing the record after you start and you don't want to be
editing the record if someone else is already editing it. You want to lock the
récord from the time you read until you update it. In this case the lock attempt
made by EtRetrieve() will fail if someone else has the record locked already
(returning an error code of LockedBySemaphore). If EtRetrieve() succeeds
then it is safe to edit and update the record.

1Lock/Leave Locked (with system timeout)
LockFlag¥% = 2
Call EtRetrieve(... LockFlag$%, Status%)

IF Status% = 0 THEN
"Edit the record

'The record 1s already locked, unleock it when update is
' finished

LockFlags = 5

Call EtUpdate(... LockFlag% ...)

'If you should declde to abort the update, you will still need
' to unlock the current record. The routine
' EtUnlockCurrentRecord 1s used for this purpose.
Call EtUnlockCurrentRecord(... }
END IF

Lock Collisi

A lock collision occurs when one user attempis to lock a record already locked
by another user. This usually occurs on a retrieve operation, but can also occur
during an update (if you didn't lock the record when retrieving it) or a delete.

When you request a lock to be placed on a record during a retrieve or update
operation, you can instruct the E-Tree routines exactly how to react should a
lack collision occur: Retry the lock for the amount of time specified by the
current "SystemTimeout” value (LockTypes 3 and 4), or retry the lock for an
infinite period of time (LockTypes 1 and 2).

The default SystemTimeout value is 10 seconds. If a LockType of 3or4 is
used and the lock request cannot be satisfied within this period of time, the
Reirieve or Update operation will fail with a LockedBySema error (indicating
another workstation already has the record locked). You can change the

16

Using E-Tree Plus

SystemTimeout value using the EtSetLockTimeout routine, or fetch its current
setting using the EtGetLockTimeout routine.

When a lock collision occurs, sometimes it would be desirable to display a
message Lo your user indicating that someone else has the record locked, and
then prompt "<R>etry or <A>bort?" To handle this scenario, you can check
the Status% variable after each Update and Retrieve operation and branch to a
special part of your program designed to display the message and to wait for an
answer to the prompt. Although this approach isn't very difficult to implement,
it can get a bit tedious. For this reason, we've dévised an alternative that
allows you to handle lock collisions more generically, without the need for
custom code following every Retrieve and Update operation.

In the module ETLOCK.SUB, there are two functions:

® EtLockTimeoutMsg% - Invoked by E-Tree's internal routines
when a LockType 3 or 4 (system timeout) fails. In other words,
it's invoked when a lock was not successfully placed in the
current SystemTimeout period. If a value of -1 (True) is returned
by this function, the lock attempt is retried. If a value of 0 (False)
is returned, the lock attempt is not tetried and control is returned
1o your program with the Status% reflecting a LockBySema error.
By default this function returns a 0 (False).

= EiLockNoTimeoutMsg% - Invoked by E-Tree's internal routines
when a LockType 1 or 2 (infinite limeout) fails. By defauli, this
function returns a value of -1 (True) indicating that the lock
should be retried (retry continuously).

These routines provide you with a centralized location to insert your own,
custom lock collision code. Remember, if you add code to these routines
within the ETLOCK.SUB file, you must recompile the E-Tree source files and
rebuild your libraries before the changes will take effect. The BLDLIB.BAT
file can accomplish this for you in one easy step.

4 (E) Data Types Supported By E-Tree Plus

The following list defines the data types that are understood by E-Tree Plus
and the named constant for each (if defined). These are the only data type
values that will be correctly evaluated. The named constants used represent
the numeric values currently assigned to designate data types. All type
numbers above the ones listed are reserved for future additions. The constants
are defined in ETCONST.BL

17

ElliTech Development, Inc.

Type

Variable Length Data
Signed Binary Integer
Unsigned Binary Integer
Auto Increment

Integer

Long Integer

IEEE Single Precision
IEEE Double Precision
IEEE Extended Precision
PB Fixed Point BCD

PB Floating Point BCD
MBF Single Precision
MBF Double Precision
PDS Currency

ASCII Case Insensitive
ASCII Case Sensitive

Notes:

Named Constant
EtVariable
EtSigned
EtUnSigned
EtAuto
Etlnteger
EtLong
EtSingle
EtDouble
EtIEEEx
E(PBBCDFixed
EtPBBCDFloat
EtMBFs
EtMBFd
EtCurrency
EtString
EtStringCS

Length
UserDefined
UserDefined
UserDefined
4 bytes (Long Int)
2 bytes
4 bytes
4 bytes
8 bytes
10 bytes
8 bytes
10 bytes
4 bytes
8 bytes
8 bytes
UserDefined
UserDefined

® The lengths for data types with 'user defined' lengths are defined
when the index key or data field is defined.

® The signed and unsigned-integer types can be any length. It is
assumed that the least significant byte is stored in the first
position in the field or key and that the bytes continue in order of
significance to the most significant in the last byte of the field.
This follows the pattern set by Intel in storing word and
double-word integer values in memory. Unsigned-integers are
also assumed to be stored in 2's complement form.

® Autoincrement fields are signed long integers.

4 (F) Putting E-Tree Plus to Work

Using the E-Tree Plus routines is very straight forward. For most applications
there are four main areas of interest:

® (Creating a new database
® Creating indexes
® [nserting, updating, and deleting records

18

Using E-Tree Plus

® Moving around the database

1. Creating a Database

The EtCreate() routine is used Lo create a new, empty database. The call to
EtCreate() establishes the record structure for the database and initializes the
file structure. It also opens the database and initializes data structures required
to manage the database. At this point the database does not have any data
records or index structures defined.

An existing E-Tree database must be opened for access using the EtOpen()
routine, Once the database is opened, either as part of EiCreate() or using
EtOpen(), it can be accessed and manipulated by the other E-Tree routines.

The EtFileExist routine can be used to determine if a specific file already
exists. This will help you to determine if you need to create the database or
simply open it.

2. Creating Indexes

Keeping data in a defined, sorted order is the main reason for using an
ISAM-type database such as E-Tree Plus. Before E-Trée Plus can order the
data records, you must define the structure of the key for each index that will
be used. The routines EtCreateIndex and EtCreateIndex2 are used (o store a
key description in the database and initialize the index, including adding all
existing data records to the index. The EtCreateIndex routine is used to define
keys that consist of one or more complete fields (like PDS ISAM's "combined
indexes"). EtCreatelndex?2 is used to define keys that can consist of smaller
pieces or "segments” of fields instead of entire fields. EiCreatelndex is easier
10 use, but not as flexible as EtCreatelndex2.

Using EiCreatelndex, you define the key description by passing a string array
containing the names of the fields that will comprise this index in the order in
which they should be sorted. In other words, each field defines a segment for
the key definition.

Using EtCreateIndex2, you must specifically define each segment that will
describe the index. This means that for each key segment you must provide
the offset, length, data type, sort direction, and a modify-protect flag. Each
segment can be made of any part of the data record; this includes compleie
fields or pieces of one or more fields. As with EtCreatelndex, you pass an array
with each element describing a segment of the key.

19

EliTech Development, Inc.

The only limit on the number of indexes or number of segmérts to a single
index that you can define is that all the key definitions must fit on a single page
in the database. The page size defined when EtCreate() originally created the
database limits the number of index segments

-
E-Tree indexes can be added or deleted at any time using EtCreateIndex() and -~
EtDelcteIndex(). Adding and deleting indexes requires a considerable effort in
terms of both time and file manipulation. If an index will be used frequently it
should be created very early in the life of the database (say, just after EtCreate)
and then left to be maintained incrementally. If an index is used only for a
special purpose and then only infrequently, it should be added when needed
and deleted when not needed. This will save file space and time when
inserting data records (since every index must be updated after an insertion).

3. Inserting, Updating, and Deleting Records

New data records are added to the data base using the Etlnsert() routine. This
routine stores the new data in the database and updates all defined indexes to
reflect the addition.

Existing data records are read from the database by making the desired record
the current record using one of the EtSeekX X (searches the index for the
specified key value) or EtMoveXX (moves the current record pointer)
functions and then using E(Retrieve to read it from the file.

You can modify or "update” the current record using the EtUpdate routine.
EtUpdate() replaces the old data with new data and updates all the defined
indexes.

You can delete the current record by using the EtDelete routinie. EtDelete
removes the data record from all defined indexes and releases the record's disk
space for use by future insertions.

4. Navigating Through the Database

The EtSetindex routine is used to specify which of the databases defined
indexes to use when attempled to locate a specific record or group of records.
To access data by a defined index , use EtSetIndex() to maké the desired index
"current.” All EtSeekXX functions use the current index to find their way
through the index to access data. The 'Null' index is defined as the raw otder
of the data in the database.

20

Using E-Tree Plus

If the Null index is the current index, either an index is not defined, EtSetIndex
has not been used, or EtSetIndex has been used to make the Null index current.
The Null index can only be traversed using the EtMoveXX functions. The
EtSeekXX furictions will not work on the Null index.

Once a true index has be selected (other than 'Null'), the EtSeekXX functions
can be used to find a record based on a target key value or partial key value.
There are five different flavors of EtSeek. Each search the current index for the
first entry that is EQual to (EtSeekEQ), Greater Than (EtSeekGT), Greater than
or Equal to (EtSeckGE), less than (EtSeekLT), or less then or equal to
(EtSeekLE) the key value you provide. If an entry is not found, the EtEOF
function will return -1 (TRUE). If an entry is found, EIEOF teturns 0 (FALSE)
and the current record is set to the first record matching your seek criteria. The
following pseudocode describes the procedure for locating a specific record:

EtSetIndex Handle, "IndexName", Status

EtSeekEQ Handle, KeyValue, Status

IF NOT EtEOF (Handle%)
EtRetrieve Handle, RecordBuffer, LockType, Status
PRINT RecordBuffer

ELSE
PRINT "“Record not found."

END IF

If you want to retrieve a group of records maiching your seek critetia,
EtSeekXX locates the first record and EtMoveNext moves 1o the next and
subsequent records. The EtEOF flag will be set when you attempt to
EiMoveNext past the end of the index. The following pseudocode demonstrates
how to locate and display all records matching your seek crileria:

EtSetInde¥ Handle, “IndexName", Status
EtSeekEQ Handle, KeyValue, Status
DO UNTIL EtEOF (Handle)
EtRetrieve Handle, RecordBuffer, LockType, Status
IF RecordBuffer.KeyField = KeyValue THEN
PRINT RecordBuffer

ELSE 'If the key values don't match, we've
EXIT DO ' moved past the last dne we're Interested
END IF ' in, so exlt the loop.
EtMoveNext Handle, Status
LOOP

Once any record has been made current, EtMoveNext() and EtMovePrevious()
can be used to move to records in the order defined by the current index.
EtMoveFirst and EtMoveLast are used to move to the first ahd last record in
the current index (respectively).

5. Pseudocode Examples

21

EliTech Development, Inc.

The following is a short pseudocode example of the steps used to create a
database with an index, and add a record to it. This is a descriptive example
without the complete argument lists for the routines used. For the full
argument lists refer to the appendix.

‘Define the record structure and create the database

Call EtCreate{ ...)

'Create an Index
Call EtCreatelndex({ ...)

‘Insert a new data record
Call EtInsert(...)

'Close the database
Call EtClose(...)

The following is a short pseudocode example of the steps used to open an
existing database and read all the records in the order defined by an existing
index.

‘Open it

Call EtOpen{ ...)

tSelect the index to use and go to the first record
Call EtSetIndex(...)

Do Until EtEOF{ ...)
‘read 1t
Call EtRetrleve(...)
'do something

"'next
Call EtMoveNext(...)

Loop

‘Close the database when done
Call EtClose{ ..)

4 (G) Variable-length Fields

The may be occasions where you need to store a piece of variable-length data
along with your fixed-length data. For example, the fixed-length portion of
your record can contain "header" information and the variable-length field can
be used for memo fields, invoice line-item entries, binary data such as graphics
images, etc. In many cases a variable-length field can eliminate the need for an
additional sequential file for such data.

The following are some things to keep in mind when you are thinking about
using variable-length fields:

® You can define one variable-length field per record and it must be
the last field defined (EtCreate is used to define your record -

22

Using E-Tree Plus

structure and to create an empty database file).

Technically, the maximum length of an E-Tree Plus
variable-length field is limited only by available disk space.
However, because of the 32K limit on length BASIC places on
variable-length strings, the E-Tree routines EtRetrieve Variable
and EtUpdateVariable must also limit variable-length fields to
32K.

The high-level routines EtRetrieveVariable2 and
EtUpdateVariable2 are used if you want to specify your own
memory buffer area (by segment and offset addresses) instead
using a BASIC variable-length siring as the buffer. Using these
routines, the maximum length of a variable-length ficld can be up
to 64K in size.

Optimum performance will be achieved if you limit the length of
your variable-length data to the page size of the file (which is
defined during the file creation).

The EtRetrieve, EtUpdate and EtInsert routines are used to
manipulate the fixed-length portion of your record. The
EtRetrieveVariable and EtUpdateVariable routines are used to
manipulate the variable-length field. In other words, if yon wish
to insert a new record containing fixed and variable-length data,
two steps are required; EtInsert and EtUpdateVariable. The same
applies to retrieving data: EtRetrieve retrieves the fixed-length
data and EtRetrieveVariable retrieves the variable-length data.

The EtUpdateVariable routine is used to insert new
variable-length data for a record as well as to update data in an
existing variable-length field. Updating a variable-length field
completely replaces the old data with the new.

When retrieving record data, you can retrieve just the fixed-length
portion, just the variable-length portion or you can retrieve both.
The same applies (o updating a record containing variable-length
data.

4 (H) Opening More than Four E-Tree Files Simultaneously

By default, you can open a maximum of four E-Tree database files
simultaneously. For each open database, we must allocate around 1K of BASIC
data space (mostly far memory, but some in DGroup). We felt a default value

23

EliTech Development, Inc.

of four open files would meet the needs of most users while not requiring a
great deal of overhead. If your needs exceed this default limitation, there is a
simple solution.

Before calling EtCreate or EtOpen for the first time, invoke the EtInitManager
function. With this procedure, you can specify the desired number
simultaneously open files. For example

REM $INCLUDE:'ETREE.BI'

MaxFiles% = 8

Result% = EtInitManager%(MaxFiles%)

IF Result%s THEN
PRINT "Error"; Result%;" initializing record manager!”
END

END IF

'At this point, you can now open up to 8 E-Tree files at a time

4 (I) E-Tree Database Version 1D

Embedded in the header of each E-Tree database file is a "file ID" string. By
default, it is defined as "EllTech Development Corp. E-Tree ISAM Version
1.00". Some of our customers feel uncomfortable with another company's
name embedded within their database files. If you would like to change this
ID, you have a couple of options:

® Load the ETREEHLSUB file into a text editor. It is located in the
"SUB\" directory off of your default ETREE subdirectory. In this
file, search for "EtFileStructurelD$ =". There you will find the ID
definition. Change it to whatever you want. It must be 64
characters in length or less. Save the file and run BLDLIB.BAT
to recompile E-Tree's BASIC source files and to rebuild libraries.

= If you don't want to modify E-Tree's source code file, you can
redefine the ID string within your program. Before you call
EiCreate or EtOpen for the first time, do the following:

REM SINCLUDE:'ETREEBI'

Result% = EtlnitManagerDefault% 'Or EtInitManager

IF Result% THEN
PRINT "Error";Result%;"initializing E-Tree's record manager!”
END

END IF

EtFileStructurelD$ = "New ID data goes here”

That's it! Just make sure that the new ID is 64 characters in length or less.

24

Uéing E-Tree Plus

4 (J) Error Codes Generated by E-Tree Routines

All routines that return a Status% code, either as an argument to the routine or
as the value of a function, will return a zero to indicate that the routine
completed successfully or a non-zero value to indicate an error. All Status%
codes greater than zero correspond to DOS errors. DOS non-critical €ITors are
returned as the error value from DOS plus 100. DOS critical errors are
returned as the actual value DOS returns. E-Tree Library errors are returned as
negative values. In addition, some functions have specific negative Status%
codes that relate only to the specific function.

See Appendix C for a complete list of E-Tree, DOS and EMS error codes.

25

EilTech Development, Inc.

Section 5

Manipulating Databases With EUTIL.EXE

EUTIL.EXE is E-Tree's external database maintenance utility. It provides the
following functions:

Converts existing Btrieve, dbase, PDS ISAM, and
comma-delimited ASCII files to E-Tree's file format.

Allows you to modify an existing database's record structure (add
fields and delete fields).

Exports data (entire records or specific fields) from an E-Tree file
to a comma-delimted file.

Rebuilds an E-Tree database in the event of data record or index
corruption.

Packs the database 1o remove unused data pages (should only be
necessary should you delete several hundred records at a time).
Resets the semaphores in the database should a network
workstation lockup or reboot while having records locked.

You can distribute EUTIL with your application programs free of royalties and

restrictions.

Because we are enhancing and adding features to EUTIL on almost a weekly
basis, we chose not to document it in this revision of the manual. In your
default ETREE directory, you'll find a file called EUTIL.DOC. It's an ASCII
text file describing the EUTIL command-line symax and it's newest features.
EUTIL updates are available free of charge from ElliTech's BBS at (404)
928-7111. If you don't have a modem, we'll be happy to send you an update
disk for a nominal charge of $10. Just give our technical support department a
call at (404) 928-8960.

ElliTech Development, Inc.

Section 6
Routine Reference

6 (A) User-Level Routines

The following routines are the User Level routines. For most applications
these are the only routines you will need to use to create and maintain your
databases.

EtSetindex
EtBOF EtTextComp
EtClose EtUnlock AllRecords
EtCloseAll EtUnlockCurrentRecord
EtCreate EtUpdate
EtCreateIndex EtUpdate2
EtCreateIndex2 EtUpdate Variable
EtDelete EtUpdateVariable2
EtDeletelndex
E({EOF
EtGetCurRecAdr
EtGetCurVarAdr
EtGetlndex
Etnsert
EWLOF
EtMoveFirst
EtMoveLast
EtMoveNext
EtMovePrevious
EtOpen
EtPhoneHome (just kidding)
EtRetrieve
EtRetrieve2
EtRetrieve Variable
EtRetrieveVariable2
EtSeekEQ
EtSeekGE
EtSeekGT
EtSeekLE
EtSeekLLT

28

Reference - User-Level Routines

Function EtBOF% (Handle%)

Tests whether the last Move or Seek operation went past the beginning of the
current index. It's generally used in conjunction with EtMovePrevious to
determine when the beginning of the current index has been reached.

Parameters

Handle%
The E-Tree handle for the database.

Return Values

The value of the function is True (-1) if the last move or seek function placed
the current record past the beginning of the current index (no'more records past
this point in the EtMovePrevious direction). For example, EtMoveFirst sets
the current record to the first record in the current index. At this point, EtBOF
would return False (0) because the pointer is at the first record and not past it.
If, at this point, EtMovePrevious was invoked, the EBOF function would
return True because an atiempt was made to move past the beginning of the
index.

Also note that the EtBOF and EtEOF functions will both return True if no
matches were found based on the last EtSeek.

EliTech Development, Inc.

Sub EtClose(Handle%)

Close a database and release all resources allocated for it.

When the last open database is closed, all the resources allocated by the E-Tree
Memory and Lock managers are released.

Parameters

Handle%
The E-Tree handle for the database to close.

Return Values

None. If an invalid handle is passed or if the database previously accessed with
Handle% has already been closed, EtClose simply ignores the request.

Reference - User-Level Routines

Sub EtCloseAll

Closes all E-Tree database files and releases all resources allocated to them.

When the last open database is closed, all the resources allocated by the E-Tree
Memory and Lock managers are released.

Parameters

Handle%
The E-Tree handle for the database to close.

Return Yalues
None.

In QB4.x, you cannot keep E-Tree files open across a CHAIN. However, you
can keep them open if the E-Tree routines are in a BC6 or PDS extended
runtime library (RTM).

If the E-Tree code is not in an RTM, you must call the EtCloseAll and
EtUnhook routines immediately prior to the CHAIN.

If the E-Tree code is in an RTM, you must close all E-Tree files prior to
SHELLing. This is because BASIC unloads the runtime library from memory
in order to make more DOS memory available during the SHELL.

See Appendix D, Section H for more information about E-Tree, RTMs,
CHAINing and SHELLing.

31

EllTech Development, Inc.

Sub EtCreate(FileName$, Pagesize&, PreAllocation&, _
Recordinfo() as EtRecordinfoType,
MaxKeys%, Handle%, Status%)

Create, initialize, and open a new, empty E-Tree database file. The file is left
open and should be explicitly closed using EtClose() before your program
ENDs.

Parameters

FileName$
The name of the file to create. Use standard MSDOS file name conventions.
If a file of the same name already exists in the target directory, an error will
be returned. The EtFileDelete routine can be used to delete an existing file.

PageSize&
Defines the page size to use. If <=0 then the optimum page size is calculated
based on the number of fields, record length, and MaxKeys%.

PreAllocation&
Number of bytes you wish to preallocate for the file on disk. The value you
provide will be rounded up to an even multiple of the file page size. A value
of zero indicates that no extra disk space (over and above what is required to
initialize the database) will be preallocated for the file. A value greater than
the amount of available disk space will return an error. The
EtFreeDiskSpace& function can be used to determine the amount of available
disk space before creating the database.

RecordInfo()
An array of type EtRecordInfoType where each element will describe one
field in the database. The bounds (size) of the array are checked and each
element is considered a valid field descriptor unless .FldName is empty (all
spaces). Each element in the RecordInfo array is comprised of the following

components:
JFldName Field name (30 character maximum)
.FldType Field type (use a CONSTant listed below)

.FldLength Field length (applies only to certain data types)

For data types with a predetermined length, the .FldLength element is
returned as the length for that data type. For data types requiring a
UserDefined length, the .FldLength must be supplied as desired for that field.

The following list defines the data types that are understood by E-Tree Plus
and the named constant for each. Fields that are of a type with the length

32

Reference - User-Level Routines

listed as UserDefined must have the .FldLength correctly assigned. For all
other data types, .FldLength is ignored on entry. .FldLength for a variable-
léngth field is also ignored.

If the record definition will include a variable-length field, it must be the last
field defined in the RecordInfo array. You can have only one variable-length
field in a record definition. '

E"E- cn st it
Type Named Constant Length
Variable Length Data EtVariable '& UserDefined
Signed Binary Integer ~ EtSigned ' UserDefined
Unsigned Binary Integer EtUnSigned 2 UserDefined
Auto Increment EtAuto 4 bytes (long integer)
Integer (signed) Etlnteger H 2 bytes
Long Integer (signed) EtLong LY 4 bytes
IEEE Single Precision EiSingle o 4 bytes
IEEE Double Precision ~ EtDouble 7 8 bytes
IEEE Extended Precision EUEEEx 10 bytes
PB Fixed Point BCD EtPBBCDFixed 8 bytes
PB Floating Point BCD EtPBBCDFloat ' 10 bytes
MBF Single Precision EtMBFs i 4 bytes
MBF Double Precision EtMBFd 2 8 bytes
PDS Currency EtCurrency 13 8 bytes
ASCII Case Insensitive EtString 15 UserDefined
ASCII Case Sensitive EtStringCS fL‘ UserDefined

MaxKeys%
The maximum number of indexes expected to be added to the file at one time
(if PageSize% is > 0, the value of MaxKeys% is ignored).

Handle%
If you pass a value of 0, the routine will automatically assign the next
available E-Tree file handle. However, if you wish to use one of your own,
you can pass a value between 1 and the maximum nuthbér of open E-Tree
files allowed. The default maximum value is 4. See the EtlnitManager routine
for information on changing this default. If you pass an invalid value for
Handle%, the EiCreate and EtOpen functions will fail and return an error
code.

Return Values

Handle%
A value used by other ISAM functions to access the database that is created.
DO NOT alter this number or none of the other E-Trée functions will work
correctly. This value is not a DOS file handle but an index into the various
tables that are maintained within the E-Tree code.

EllTech Development, inc.

RecordInfo(x).FldOffset
Offsets into record for each field (zero based). The offsets can be used for
creating key fields for indexes (see EtCreateIndex2).

PapeSize&

The page size that was used when creating the file.

PreAllocation&
If >0 on entry, it is returned with the actual number of bytes allocated to the
file. If an error occurred as a result of an excessive PreAllocation request, the
maximum number of bytes available on disk to allocate to the file will be
returned.

MaxKeys%
If you passed a PageSize& > 0 then this is the maximum number of indexes
that can be added to the database at one time.

Status%
Returned as zero if the database was successfully created and initialized or as
a non-zero error/status code. If an error occurs during preallocation, the
database will not be created (if a partial creation was managed, the file will
be deleted).

See Section 4 (G) for a compleie list of E-Tree and DOS error codes.

Reference - User-Level Routines

Sub EtCreatelndex (Handle%, IndexName$, Unique%,
Columns$(), Status%)

Create a new index in a database where the key is comprised of one or more
complete fields.

Parameters

Handle%
The E-Tree handle for the database in which you wish to create the index.

IndexName$
The name for the index, must be 30 characters or less.

Unique%

1f non-zero then duplicate keys are not allowed in the index

Columns$()
A variable-length string array containing the names of the Fields that you
wish to include in the key description. The index will be ordered according to
the order you list the field names in the Columns$() array.

Return Values

Status%
Returns zero if successful. A non-zero value represents an error code. See
Section 4(J) for a complete list of E-Tree and DOS error codes.

For example, if you had a customer list database and you wanted to create an
index that would order your data by AmountDue then by CompanyName:

REDIM Cclumns$ (1 TO 2) 'Cnly need two elements
Columnss$ (1) = “AmountDue" ‘Name of field that contalns AmountbDue data
Columns$ (2) = "CompanyName" I'Name of field contalning company name

IndexName$ = “MyIndex"
CALL EtCreatelndex (Handle%, IndexName$, Unique%, Columns% (), Status%)
IF Status% THEN

PRINT "Error";Status%;" creating index ";IndexName$

END IF

If you need greater flexibility when defining the segments of your data record
to be included in an index, see EtCreateIndex?2. It's more difficult to use than
EtCreatelndex, but significantly more flexible.

EllTech Development, Inc.

Sub EtCreatelndex2 (Handle%, IndexName$,
Desc() AS EtKeyDescType, _
Segments%, Unique%, Status%)

Create a new index in a database allowing segments definitions comprised of
pieces of fields, unmaodifiable keys, ascending and descending sorts, etc.

Parameter

Handle%
The E-Tree handle for the database in which you wish to create the index.

IndexName$
The name for the index, must be 30 characters or less.

Desc(}
An array of EtKeyDescType that defines the:
.Offset
The offset into the data record for the beginning of the
data for this key segment.
Length
The number of bytes for this segment.
Type
The Data type for this segment.
Direction
0 for ascending, non-zero for descending.
.NoModify
If non-zero then this segment is protected from
modification by updates to the data record.
Segments%
The number of elements, beginning at the array's LBOUND, used in the
Desc() array to describe all of the segments comprising this index.
Unique%
If non-zero then duplicate keys are not allowed in this index
Return Val
Status%

Returns zero if successful. A non-zero value represents an error code. See
Section 4(J) for a complete list of E-Tree and DOS error codes.

36

Reference - User-Level Routines

Sub EtDelete (Handle%, Status%)

Delete the current record from the database including any variable length data
stored with the record. All indexes are updated to reflect the deletion.

Makes the record that would be accessed by EtMoveNext() the current record
if the delete is successtul.

Parameters

Handlc%
The E-Tree handle for the database.

Return Values

Status%
Returns zero if successful. A non-zero value represents an error code. See
Section 4(J) for a complete list of E-Tree and DOS error codes.

37

EliTech Development, Inc.

Sub EtDeletelndex (Handle%, IndexName$, Status%)

Dclete an index from a database.

Once an index databasc is deleted it can no longer be used to access data. The
index must not be in use by another process in order for the deletion to be
successful.

Parameters

Handle%
The E-Tree handle for the database.

IndexName$
The name of the index to delete.

Return Values

Status%
Returns zero if successful. A non-zero value represents an error code. See
Section 4(J) for a complete list of E-Tree and DOS error codes.

If the index is in use by any other programs a LockedBySemaphore error will
be returned.

Reference - User-Level Routines

Function EtEOF% (Handle%)

Tests whether the last Move or Seek operations went past the end of the current
index. It's generally used in conjunction with EtMoveNext to determine when
the end of the current index has been reached.

Parameters

Handle%
The E-Tree handle for the database.

Return Values

The value of the function is True (-1) if the last move or seek function placed
the current record past the end of the current index (no more records past this
point in the EtMoveNext direction). For example, EtMoveLast sets the current
record to the last record in the current index. At this point, EtEOF would return
False (0) because the pointer is at the last record and not past it. If, at this
point, EtMoveNext was invoked, the EtEOF function would return True
because an attempt was made to move past the end of the index.

Also note that the EtBOF and EtEOF functions will both return True if no
matches were found based on the last EtSeek.

39

EllTech Development, Inc.

Function EtGetCurRecAdr& (Handle%)

Returns the physical address for the current record in a database. Every active
data record in the database has a unique address which was assigned when the
record was inserted. The address cannot be changed or used by any other
record as long as the record s not deleted. Once the record is deleted the
address will be re-used whert another new record is inserted.

The address defines the page and offset into the page where the data record and
information about the data récord are stored. Direct manipulation of the
database using this address should only be handled by the low-level routines in
the E-Tree Library.

Parameters

Handle%
The E-Tree handle for the database.

Return Yalues

The value of the function is the physical address for the current record. A
value of zero indicates that no record is current. This can occur when the
database is first opened (before any EtSeek or EtMove functions are used), if
there are no records in the database, or if a previous error caused the current
position in an index o be lost.

Reference - User-Level Routines

EtGetCurVarAdr& (Handle%)

Returns the physical address for the variable-len gth data for the current record
in a database.

Parameters

Handle%
The E-Tree handle for the database.

Return Values

The value of the function is the physical address for the position discriptor for
the variable length data for the current record. The descriptor contains
information which defines the actual physical location and length of the data.

11

EllTech Development, Inc.

EtGetCurVarlLen& (Handle%)

Returns the length of the variable-length data for the current record.

Parameters

Handle%
The E-Tree handle for the database.

Return Yalues

The function returns the length of the variable-length data fot the current
record.

42

Reference - User-Level Routines

Function EtGetindex$ (Handle%)

Returns the name of the current index being used 10 access data in the
database.

Parameters

Handle%
The E-Tree handle for the database.

Return Yalues

The function returns a string that contains the name of the index. If a string of
zero length is returned then the Null index is being used.

EllTech Development, Inc.

Sub Etinsert (Handle%, Buffer&, LockFlag%, Status%)

Inscrt a new fixed-length data record into a database.

Parameters

Handlc%
The E-Tree handle for the database.

Buffer&
The memory address of the buffer containing the data record to be inserted
into the database. This can be a "near” offset to a variable in DGroup (as in
VarPir(TypedVariable)) or a "far" address pointing to a PDS Far String (as in
SSEGADD(AS$)). If you have your own special type of record buffer defined
at a specific location in memory, you can use the EtFarAddress routine to
convert the segment and offset components into a 4-byte far address required
by this routine.

The data record should be stored in a static data type (a piece of data that will
always be at a fixed address). It can be a user defined type, a fiked length
string, or a static array of user types or fixed-length strings. It should not be
stored in a variable-length string or an element of a variable-length string
array because it has a possibility of being moved during the runtime "garbage
collection” process.

LockFlag%

Defines the locking condition for the new record:

-- no locks placed or removed

-~ lock before, unlock after (infinite time out)
- lock before, leave locked (infinite time out)
lock before, unlock after (system time out)

-- lock before, lcave locked (system time out)
-- assume locked, unlock after

WV N - O
'
'

If a lock is requested, the lock applied is a READ-ONLY soft-1ick on the
data record only.

If a "leave-locked" type (2 or 4) is requested, the data record wiil be
soft-locked if the insert operation is successful.

Return Values

Status%
Returns zero if successful. A non-zero value repredents an error code. See
Section 4(J) for a complete list of E-Tree and DOS error codes.

44

Reference - User-Level Routines

Function EtLOF& (Handle%)

Report the number of aclive records in the database.

Parameters

Handlc%
The E-Tree handle for the database.

Return Values

The value of the function is the number of active data records in the database.

A value of zero usually means theré are zero records in the database, but it can
also indicate that the handle is invalid, the lock failed, or the file read failed.
In cither case zero is a reasonable result.

45

EHTech Development, Inc.

Sub EtMakeRecordCurrent (Handle%, Address&, Status%)

Makes the record referenced by Address& the current record in the database
referenced by Handlc%.

If the nul!l index is current, this routine takes you directly to that record's
physical location in the database.

If an index other than the null index is current, this routine makes the record
referenced by Address& the current record in the current index.

Parameters

Handle%
The E-Tree handle of the database file.

Address&
The physical address of the desired data record. This value can be determined
by using the EtGetCurRecAdr routine while the desired record was previously
current.

Return Yalues

Status%
Returns zero if successful. A non-zero value represents an error code. See
Section 4(J) for a complete list of E-Tree and DOS error codes.

Reference - User-Level Routines

Sub EtMoveFirst (Handle%, Status%)
Sub EtMovelast (Handle%, Status%)
Sub EtMoveNext (Handle%, Status%)
Sub EtMovePrevious (Handle%, Status%)

Make the record indicated (first, last, next, or previous) in the current index the
current record.

This routine does not retrieve any record data. It simply moves the current
record pointer.

Parameters

Handle% »
The E-Tree handle for the database.

Returp Values

a= Status%
Returns zero if successful. A non-zero value represents an error code. See

Section 4(J) for a complete list of E-Tree and DOS error codes.

47

EliTech Development, Inc.

Sub EtOpen (FileName$, Handle%, Status%)

Open an existing file as an E-Tree database file.

To create and initialize a new E-Tree file, see the EtCreate routine.

Parameters

FileName$
The file name of the database to open.

Handle%
If you pass a value of 0, the routine will automatically assign the next
available E-Tree file handle. However, if you wish to use one of your own,
you can pass a value between 1 and the maximum number of open E-Tree
files allowed. The default maximum value is 4. See the EtlnitManager routine
for information on changing this default. If you pass an invalid value for
Handle%, the EtCreate and EtOpen functions will fail and return an error
code. ’

Return Values

Handle%

A valid E-Tree handle for subsequent access to the database.

Status%
Returns zero if successful. A non-zero value represents an error code. See
Section 4(J) for a complete list of E-Tree and DOS error codes.

If the file exists, has a length > 0, and is not an E-Tree database file, it is
closed and the open fails.

Reference - User-Level Routines

Sub EtRetrieve (Handle%, Buffer&, LockFlag%,_
Status%)

Retrieve the current record from the database referenced by Handle%.

Parameters

Handle%
The E-Tree handle for the database.

Buffer&
The memory address of the TYPEd variable or block of memory in which
you wish to place the incoming data record. This can be a "near” offset to a
variable in DGroup (as in VarPu(TypedVariable)) or a "far" address pointing
to a PDS Far String (as in SSEGADD(AS$)). You can also load the record into
a specific memory location. The EtFarAddress routine is used to convert the
segment and offset components into a 4-byle far address.

The data record should be stored in a static data type (a piece of data that
BASIC will always keep at a fixed address). It can be a user defined type, a
fixed length string, or a static array of uscr types or fixed-length strings. It
should not be stored in a variable-length string or an element of a
variable-length string array because it has a possibility of being moved during
the runtime "garbage collection" process.

LockFlag%

Defines the locking condition for the new record:

-~ no locks placed or removed

- lock before, unlock after (infinite time out)
-- lock before, leave locked (infinite time out)
lock before, unlock after (system time out)

-- lock before, leave locked (system time out)
-- assume locked, unlock after

([B R S N
'
'

If a lock is requested, the lock applied is a READ-ONLY soft-lock.

If a type 2 lock is used, the code will wait indefinitely for the record's
semaphore to become available. If you are using a type 4 lock, the code will
wait for the EtSystemTimeout time for the record's semaphore to become
available. If the semaphore is not available within this time, a
LockedBySema error will be returned.

49

EllTech Development, Inc.

If an unlock-after type (1,3,5) is requested the data record will be unlocked
(the semaphore will be decremented) and unlogged if the retrieve is
successful.

See the EtLockTimeoutMsg and EtLockNoTimeoutMsg routiries if you wish
to add custom code to handle lock collisions.

Return Yalues

Status%
Returns zero if successful. A non-zero value represents an error code. See
Section 4(J) for a complete list of E-Tree and DOS error codes.

Reference - User-Level Routines

Sub EtRetrieve2 (Handle%, Address&, Buffer§&,
LockFlag%, Status%)

Retrieve the fixed-length portion of a record stored at a specific location in the
database.

aram

Handle%
The E-Tree handle for the database.

Address&
The address within the E-Tree database file where the record you wish to
retrieve is located. The EtGetCurRecAdr function can be used to determine
the address of the current record in the database.

Buffer&
The memory address of the TYPEd variable or block of memory in which
you wish to place the incoming data record. This can be a "near” offsetto a
variable in DGroup (as in VarPu(TypedVariable)) or a "far" address pointing
to a PDS Far String (as in SSEGADD(AS$)). You can also load the record into
a specific memory location. The EtFarAddress routine is used to convert the
segment and offset components into a 4-byte far address.

The data record should be stored in a static data type (a piece of data that
BASIC will alwdys keep at a fixed address). It can be a user defined type, a
fixed length stririg, or a static array of user types or fixed-length strings. It
should not be stored in a variable-length string or an element of a
variable-length string array because it has a possibility of being moved during
the runtime "garbage collection” process.

This rouline assumes that the buffer referenced by Buffer& is long enough to
hold the entire fixed-length portion of the record. If it is not, memory
corruption will certainly result.

LockFlag%

Defines the locking condition for the new record:

-- no locks placed or removed

-~ lock before, unlock afier (infinite time out)
- lock before, leave locked (infinite time out)
lock before, unlock after (system time out)

-~ lock before, leave locked (system time out)
-- assume locked, unlock after

s W= O
'
'

51

EllTech Development, Inc.

If a lock is requested, the lock applied is a READ-ONLY soft-lock.

If a type 2 lock is used, the code will wait indefinitely for the record's
semaphore to become available. If you are using a type 4 lock, the code will
wait for the EtSystemTimeout time for the record’s semaphore to become
available. If the semaphore is not available within this time, a
LockedBySema error will be returned.

If an unlock-after type (1,3,5) is requested the data record will be unlocked
(the semaphore will be decremented) and unlogged if the retrieve is
successful.

See the EtLockTimeoutMsg and EtLockNoTimeoutMsg routines if you wish
to add custom code to handle lock collisions.

Return Values

Status%
Returns zero if successful. A non-zero value represents an error code. See
Section 4(J) for a complete list of E-Tree and DOS error codes.

52

Reference - User-Level Routines

Sub EtRetrieveVariable (Handle%, Buffer$, LockFlag%,
Status%)

Retrieve the variable length data for the current record.
Parameters

Handle%
The E-Tree handle for the database

Buffer$
A variable-length string that the incoming data will be placed in. If you wish
to place the data in a variable type or a memory location other than a
conventional string, the EtRetrieve2 routine can be used instead for this

purpose.

LockFlag%

Defines the locking condition for the new record:

0 -- no locks placed or removed

1 -- lock before, unlock after (infinite time out)
-- . lock before, leave locked (infinite time out)
-- lock before, unlock after (system time out)
lock before, leave locked (system time out)
-- assume locked, unlock after

[- S
'
'

If a lock is requested, the lock applied is a READ-ONLY soft-lock placed on
the fixed-length portion of the record only. If you dlready have a lock placed
on the fixed-Iength portion using EtInsenX, EtUpdateX, or EtRetrieveX, you
should use a LockFlag% of O when calling this routine.

If a type 2 lock is used, the code will wait indefinitely for the record's
semaphore Lo become available. If you are using a type 4 lock, the code will
wait for the EtSystemTimeout time for the record's semaphore to become
available. If the semaphore is not available within this time, a
LockedBySema error will be returned.

If an unlock-after type (1,3,5) is requested the data record will be unlocked
(the semaphore will be decremented) and unlogged if the retrieve is
successful.

See the EtLockTimeoutMsg and EtLockNoTimeoutMsg routines if you wish
1o add custom code to handle lock collisions.

EliTech Development, Inc.

Return Values

Buffer$

A variable-length string that receives the incoming data.

Status%
Returns zero if successful. A non-zero value represents an error code. See
Section 4(J) for a complete list of E-Tree and DOS error codes.

Reference - User-Level Routines

Sub EtRetrieveVariable2 (Handle%, Address&, Buffer&,
BufferLen&, LockFlag%, Status%)

Retrieve the variable length data for the current record.
arameter

Handle%
The E-Tree handle for the database

Address&
The address in the database where the fixed-length portion of the record is
stored. The EiGetCurRecAdr function can be used to return the address of the
fixed-length portion of the current record.

Buffer&
The memory address of the TYPEd variable or block of memory in which
you wish to place the incoming data record. This can be a "near"” offset to a
variable in DGroup (as in VarPu(TypedVariable)) or a "far" address pointing
to a PDS Far Suring (as in SSEGADD(AS$)). You can also load the record into
a specific memory location. The EtFarAddress routine is used 1o convert the
segment and offset compohents into a 4-byte far address.

The data record should be stored in a static data type (a piece of data that
BASIC will always keep at a fixed address). It can be a user defined type, a
fixed length string, or a static array of user types or fixed-length strings. It
should not be stored in a variable-length string or an element of a
variable-length string array because it has a possibility of being moved during
the runtime “garbage collection” process.

BufferLen&

The maximum length of the buffer referenced by the Buffer& address.
LockFlag%

Defines the locking condition for the new record:

0 -- no locks placed or removed

1 -- lock before, unlock after (infinite time out)

2 -- lock before, leave locked (infinite time out)

3 - lock before, unlock afier (system time out)

4 -~ lock before, leave locked (system time out)

5 -- assurne locked, unlock after

If a lock is requested, the lock applied is a READ-ONLY soft-lock placed on
the fixed-length portion of the record only. If you already have a lock placed
on the fixed-length portion using EtInsertX, EtUpdateX, or EtRetrieveX, you
should use a LockFlag% of 0 when calling this routine.

55

EllTech Development, Inc.

If a type 2 lock is used, the code will wait indefinitely for the record'’s
semaphore to become available. If you are using a type 4 lock, the code will
wait for the EtSystemTimeout time for the record's semaphore to become
available. If the semaphore is not available within this time, a
LockedBySema error will be returned.

If an unlock-after type (1,3,5) is requested the data record will be unlocked
(the semaphore will be decremented) and unlogged if the retrieve is
successful.

See the EtLockTimeoutMsg and EtLockNoTimeoutMsg routines if you wish
to add custom code to handle lock collisions.

Return Values

Buffer&
If the length of the buffer is sufficient to hold the entire variable-length
portion of the record, the memory address referenced by Buffer& will receive
the incoming data.

BufferLen&
If the buffer is too small, BufferLen& will retum the size of a buffer required
to receive the entire variable-length portion of the record.

Status%
Returns zero if successful. A non-zero value represents an error code. See
Section 4(J) for a complete list of E-Tree and DOS error codes.

Reference - User-Level Routines

Sub EtSeekEQ (Handle%, KeyAddress&, Status%) =
Sub EtSeekGT (Handle%, KeyAddress&, Status%) >
Sub EtSeekGE (Handle%, KeyAddress&, Status%) >=
(
(

Sub EtSeekLT (Handle%, KeyAddress&, Status%) ¢
Sub EtSeekLE (Handle%, KeyAddress&, Status%) ¢ =

Make the first record matching the data according to the relationship specified
the current record. These routines do not work on the "null" index.

Parameters

Handle%
The E-Tree handle for the database.

KeyAddress&
The memory address of a key value 10 use in the Seek operation. This can be
a "near” offset into DGroup (Varptr) of a scalar or TYPEJ variable, or a far
address to another type data structure. TYPEd variables (with each element
representing a key segment) or a fixed-length string (for keys containing only
a single segment) are ideal for this purpose. The data structure that
KeyAddress& points to is expecied to have the same structure and length as
the key defined by EiCreatelndex or EiCreatelndex2.

Return Values

The EAEOF and EtBOF functions will return False (0) if a match was found and
the current record pointer will be positioned at that record's address in the
database file. One of the EtRetrieveX routines can then be used to retrieve the
data associated with the record. The EtMoveXX routines can be used to move
in the desired direction in the current index so that additional records can also
be retrieved.

Status%
Returns zero if successful. A non-zero value represents an error code. See

Section 4(J) for a complete list of E-Tree and DOS error codes.

EllTech Development, Inc.

Sub EtSetindex (Handle%, IndexName$, Status%)

Make a specified index the current index and make the first record in that
index the current record.

aram

Handle%
The E-Tree handle for the database.

IndexName$

The name of an index that exists in the database.

Return Values

Status%

Returns zero if successful. A non-zero value represents an error code. Sce
Section 4(J) for a complete list of E-Tree and DOS error codes.

A,

Reference - User-Level Routines

Function EtTextComp% (A$, B$)

Performs a case-insensitive ASCII comparison between A$ and B$.

The dealing with indexes based on string fields, the EiSeekXX routines wili
locate the first record matching your search criteria. If you wish 1o retrieve a
group of records, you must then EtMoveXX to the next and subséquent records
and compare the key values yourself in order to determine when you've
reached the end of your desired selection set. This routine is usefal when you
need to make such case-insensitive comparisons of ASCII strings.

Parameters

A$ and BS
The two strings that will be compared.

Return Values
The result of the functions will be one of the following:

0 A$=B$
-1 A$<B$
1 A$>B$

59

ElliTech Development, Inc.

Sub EtUnlockAliRecords (Handle%)

Removes all record locks placed by the current process in the database
referenced by Handle%.

[}aramg!g[s

Handle%
The E-Tree handle for the database.

Return Valyes

None.

When locking several records as part of a transaction, this routine makes is
casy to globally remove all of the locks with one function call when the
transaction is completed or aborted.

Reference - User-Level Routines

Sub EtUnlockCurrentRecord (Handle%)

Removes a lock placed on the current record by the Etlnsert, EtUpdate or
EfRetrieveX routines. This call is ignored if the current record is not currently

locked.

After placing a lock on a record during an Insert, Update or Retrieve operation,
this routine can simply remove the lock without requiring a call to the
EtUpdate routine. This is useful when you retrieve and lock a record for editing

and then decide not to update the record in the database file (thus unlocking the
record).

Parameters

Handle%
The E-Tree handle for the database.

Return Values

None.

61

EliTech Development, Inc.

Sub EtUpdate (Handle%, Buffer&, LockFlag%, Status%)

Update the fixed-length portion of the current data record. Update all indexes
to reflect any changes in the data.

ramefer

Handle%
The E-Tree handle for the database.

Buffer&
The memory location where the NEW data for this record is stored. This can
be a "near” offset to a variable in DGroup (as in VarPur(TypedVariable)) or a
"far” address pointing to a PDS Far String (as in SSEGADD(AS$)). If you
have a record buffer of your own defined at a specific location in memory,
you can use the EtFarAddress routine to convert the segment and offset
components into a 4-byte far address.

The data record should be stored in a static data type (a piece of data that will
always be at a fixed address). [t can be a user defined type, a fixed length
string, or a static array of user types or fixed-length strings. It should not be
stored in a variable-length string or an element of a variable-length string
array because it has a possibility of being moved during the nuntime "garbage
collection" process.

LockFlag%

Defines the locking condition for the new record:
0 -- no locks placed or removed

1 -- lock before, unlock after (infinite time out)
2 -- lock before, leave locked (infinite time out)
3 .- lock before, unlock after (system time out)
4 - lock before, leave locked (system time out)
5 --- assume locked, unlock after

Il a type 2 lock is used, the code will wait indefinitely for the record's
semaphore to become available. If you are using a type 4 lock, the code will
wait for the EtSystemTimeout time for the record's semaphore to become
available. If the semaphore is not available within this time, a
LockedBySema error will be returned.

If an unlock-after type (1,3,5) is requested the data record will be unlocked
(the semaphore will be decremented) and unlogged if the retrieve is
successful.

See the EtLockTimeoutMsg and EtLockNoTimeoutMsg routines if you wish
to add custom code to handle lock collisions.

62

)

Reference - User-Level Routines

Return Values

Status%
Returns zero if successful. A non-zero value represents an error code. Se¢
Section 4(J) for a complete list of E-Tree and DOS error codes.

63

EliTech Development, Inc.

Sub EtUpdate2 (Handle%, Address&, Buffer&, LockFlag%,_
Status%)

Update the fixed-length portion of the record referénced by Address&. Updates
all indexes 1o reflect any changes in the data.

ramefer;

Handle%
The E-Tree handle for the database.

Address&
The address of the fixed-length portion of the data record. The
EtGetCurRecAdr function can be used to detetmine the address of the
fixed-length portion of the current record.

Buffer&
The memory location where the NEW data for this record is stored. This can
be a "near" offset to a variable in DGroup (gs in VarPur(TypedVariable)) or a
"far" address pointing to a PDS Far String (as in SSEGADD{ASY)). If you
have a record buflfer of your own defined at a specific location in memory,
you can use the EtFarAddress routine to corvert the segment and offset
components into a 4-byte far address.

The data record should be stored in a static data type (a piece of data that will
always be at a fixed address). It can be a user defined type, a fixed length
string, or a static array of user types or fixed-length strings. 1t should not be
stored in a variable-length string or an element of a variable-length string
array because it has a possibility of being moved during the tuntime "garbage
collection” process.

LockFlag%
Defines the locking condition for the new record:
0 -- no locks placed or removed
1 -- lock before, unlock after (infinite time out)
2 -- lock before, leave locked (infinite time out)
3 -- lock before, unlock after (system time out)
4 - lock before, leave locked (system time out)
5 -- assume locked, unlock after

If a type 2 lock is used, the code will wait indefinitely for the record's
semaphore to become available. If you are usihg a type 4 lock, the code will
wait for the EtSystemTimeout time for the record's semaphore to become
available. If the semaphore is not available within this time, a
LockedBySema error will be returned.

64

Reference - User-Level Routines

If an unlock-after type (1,3,5) is requested the data record will be unlocked
(the semaphore will be decremented) and unlogged if the retrieve is
successful.

Sece the ElLockTimeoutMsg and EtLockNoTimeoutMsg routines if you wish
10 add custom code 1o handle lock collisions.

Return Values

Status%
Returns zero if successful. A non-zero value represents dn error code. Sce
Section 4(J) for a complete list of E-Tree and DOS error codes.

65

EllTech Development, Inc.

Sub EtUpdateVariable (Handle%, Buffer$, LockFlag%,_
Status%)

Update the variable-length portion of the current data record.

Parameters

Handle%
The E-Tree handle for the database.

Buffer$

A variable-length string containing the new data to be stored with this record.
LockFlag%

Defines the locking condition for the new record:

0 -- no locks placed or removed

1 -- lock before, unlock after (infinite time out)

2 -- lock before, leave locked (infinite time out)

3 -- lock before, unlock after (system time out)

4 -- lock before, leave locked (gystem time out)

5 -- assume locked, unlock after

If a lock is requested, the lock applicd is a READ-ONLY soft-lock placed on
the fixed-length portion of the record only. If you already have a lock placed
on the fixed-length portion using EtlnsertX, EtUpdateX, or EtRetrieveX, you
should use a LockFlag% of 0 when calling this routine.

If a type 2 lock is used, the code will wait indefinitely for the record's
semaphore to become available. If you are using a type 4 lock, the code will
wait for the EtSystemTimeout time [or the record's semaphore to become
available. If the semaphore is not available within this time, a
LockedBySema error will be returned.

If an unlock-after type (1,3,5) is requested the data record will be unlocked
(the semaphore will be decremented) and unlogged if the retrieve is
successful.

See the EtLockTimeoutMsg and EtLockNoTimeoutMsg routines if you wish
to add custom code to handle lock collisions.

Return Values

Status%
Returns zero if successful. A non-zero value represents an error code. See
Section 4(J) for a complete list of E-Tree and DOS error codes.

66

Reference - User-Level Routines

Sub EtUpdateVariable2 (Handle%, Address&, Buffer&, _
BufferLen&, LockFlag%, Status%)

Update the variable-length portion of the record referenced by Addressé&.
Parameters

Handlc%
The E-Trce handle for the database.

Address&
The address of the fixed-length portion of the data record. The
EiGelCurRecAdr function can be used to determine the address of the
fixed-length portion of the current record.

Buffer&
The memory location where the NEW data for the variable-length portion of
this record is stored. This can be a "near” offsel 10 a variable in DGroup (as
in VarPir(TypedVariable)) or a "far” address pointing to a PDS Far String (as
in SSEGADD(AS$)). If you have a record buffer of your own defined at a
specific location in memory, you can use the EitFarAddress routine to convert
the scgment and offset components into a 4-byte far address.

The data record should be stored in a static data type (a picce of data that will
always be at a fixed address). It can be a user defined type, a fixed length
string, or a static array of user types or fixed-length strings. It should not be
stored in a variable-length string or an element of a variable-length string
array because it has a possibilily of being moved during the runtime "garbage
collection” process.

BufferLen&
The length of the valid data stored at the memory location referenced by
Buffer&. This is how many bytes will be written to the variable-length
portion of the record.

LockFlag%

Defines the locking condition for the new record:
0 -- o locks placed or removed

1 -~ lock before, unlock after (infinite time out)
2 -- lock before, leave locked (infinite time out)
3 -~ lock before, unlock after (systeni time out)
4 -- lock before, leave locked (systein time out)
5 -- assume locked, unlock after

If a lock is requested, the lock applied is a READ-ONLY soft-lock placed on
the fixed-length portion of the record only. If you already have a lock placed

67

EliTech Development, Inc.

on the fixed-length portion using EtlnsertX, EtUpdateX, or EtRetrieveX, you
should usc a LockFlag% of 0 when calling this routine.

If a type 2 lock is used, the code will wait indcfinitely for the record's
semaphore (o become available. If you are using a type 4 lock, the code will
wait for the EtSystemTimecout time for the record’s scmaphore to become
available. If the semaphore is not available within this time, a
LockedByScema error will be returned.

If an unlock-after type (1,3,5) is requested the data record will be unlocked
(the scmaphore will be decremented) and unlogged il the retricve is
successful.

See the EtLockTimeoutMsg and EtLockNoTimcoutMsg routines if you wish
to add custom code to handle lock collisions.

Return Values

Status%
Returns zero if successful. A non-zero value represents an error code. See
Section 4(J) for a complete list of E-Tree and DOS error codes.

Reference - High-level Routines

6 (B) High Level Routines

High-Level routines are those that report on the state of a database and provide
access to the data structures used to maintain a database. In general the data
structures they access and report on should not be manipulated directly.

EtFarAddress
EtFarToSegment
EtFarToOffset
EtGetCurrentRecordCRC
EiGetFileHandle
EtGetLockTimeout
EtGetPageSize
EtGetRecordSize
EilnitManager
EunitManagerDefault
EtLockTimeoutMsg
EtLockNoTimeoutMsg
EtSetl.ockTimeout

69

EliTech Development, Inc.

FUNCTION EtFarAddress& (Segment&, Offset&)
FUNCTION EtFarToSegment& (FarAddress&)
FUNCTION EtFarToOffset& (FarAddress&)

Routines to convert to and from a four-byte far address.
This is an assembly language routine contained in ETCPYMEM.OBIJ.

Although we use long integers to represent Segment and Offset, integers can
actually be used instead. We chose longs because segment and offset addresses
have a range from 0 to 65535 and they are easier to deal with in BASIC when
in unsigned form because BASIC display's signed integer values > 32767 as
negative numbers.

Parameters

Segment& and Offset&
The segment and offset components that will be combined into a 4-byte far
address by the EtFarAddress routine.

FarAddress&

Contains the 4-byte far address you are converting from.

Return Values

EtFarAddress retums a long integer which contains the combined segment
and offset addresses.

EtFarToSegment returns a long integer that represents the segment portion of
the FarAddressé&.

EtFarToOffset returns a long integer that represents the offset portion of the
FarAddress&.

70

Reference - High-level Routines

Function EtGetCurrentRecordCRC& (Handle%)

Returns the CRC value of the current data record. The CRC for a data record
is updated on the following actions: Etlnsert, EtUpdate, and ERetrieve. This
value is used as a check for damaged data. Each time the data is read, the CRC
is recalculated and checked against the CRC stored in the file. If the two
values are not the same then either the database is damaged or the specific
record is damaged.

E"][ameters

Handle%
The E-Tree handle for the database.

Return Values
The value of the function is a 32-bit unsigned integer value of the CRC.
Note: This function does not distinguish between an invalid handle and one

that simply does not have a current record defined. To make sure the handle
is valid, use one of the other EtGetXXX() functions first.

71

EliTech Development, Inc.

Function EtGetFileHandle% (Handle%)
Returns the DOS file handle associated with an E-Tree database.

Parameters

Handle%
The E-Tree handle for the database.

Returp Yalues

The value of the function is the DOS file handle, -1 if the E-Tree handle is
invalid, or zero if the DOS file handle is invalid.

The Handle% value returned by E-Tree's EtCreate and EtOpen routines is not
the actual DOS file handle. Instead, it is an index into the various tables of
information that must be maintained within (he E-Tree record management
code. Although direct manipulation of an E-Tree database file is not
recommended, the EtGetFileHandle routine will return the DOS file handle for
a given E-Tree database file should you choose to do so.

72

Reference - High-level Routines

Function EtGetLockTimeOut& ()
Returns the current value used for the lock time out timer.

Before this routine is used EtInit() MUST be called 1o initialize the file lock
manager.

The routine EtSetLock Timeout is used to change the "system timeout” setting.

Parameters

None

Return Values

The function returns the number of timer ticks that define the duration of
time in which the EtLock%() routine will atiempt to set a lock.

73

EliTech Development, Inc.

Function EtGetPageSize& (Handle%)
Returns the page size used by an E-Tree database.

Parameters

Handle%
The E-Tree handle for the database.

Return Yalues

The value of the function is the page size used by the data base, -1 if the
E-Tree handle is invalid, or zero if the page size in invalid.

74

Reference - High-level Routines

Function EtGetRecordSize& (Handle%)

Returns the size of the fixed length data records in an E-Tree data base.
Parameters

Handle%
The E-Tree handle for the database.

Return Values

The value of the function is the size of the data record for the database, -1 if
the E-Tree handle is invalid, or zero.

A zero length record size means the record has either not been defined or
contains only a variable length ficld. Check the variable length flag to decide.
If the variable length flag is false (zero) then the record layout has not yet been
defined.

75

EliTech Development, Inc.

Function EtGetVariableFlag% (Handle%)

Returns the Variable Length Data flag for an E-Tree database. This flag
indicates whether the records in the database have a variable length field
defined. o~

[}aramﬂg]s

Handle%
The E-Tree handle for the database.

Return Values

The value of the function is true (<>0) if the record has a variable length field
defined, or false (zero) if it doesn't.

This function does not distinguish between an invalid handle and one that
simply does not have a variable length field. To make sure the handle is valid
use one of the other EtGetXXX() functions first.

76

Reference - High-level Routines

Function EtinitManager% (MaxOpenFiles%)

Each time this routine is called the E-Tree Manager is initialized. If it is not
the first time then all open databases are closed, all allocated memory is
released, and the memory and lock managers are re-installed.

You can call this routine yourself before opening the first E-Tree database file,
should you have a need to open more than four E-Tree files simultaneously.

Parameters
MaxOpenFiles%

Defines the maximum number of open databases allowed. Itis used to
dimension the arrays used 10 manage the databases.

Return Yalues

The value of the functions is a zero for success or a non-zero for an error. If an
error is reported, DO NOT use any of the E-Tree Manager routines.

EliTech Development, Inc.

Function EtinitManagerDefault% ()

Installs the E-Tree manager using the default maximum of 4 open databases.

The value of the functions is a zero for success or a non- -zero for an error. If an
error is reported, DO NOT use any of the E-Tree Manager routines.

78

Reference - High-level Routines

Function EtLockNoTimeoutMsg% ()
This function is called whenever a lock with infinite timeout fails.

Before this routine is used EtInit() MUST be called to initialize the file lock
manager.

If you wish to write your own generic "handler” for "infinite timeout" lock
collisions, you can add your own code 1o this routine. It is located in the source
code module ETLOCK.SUB. See Section 4(D) "Introduction to Record
Locking" for more information.

Parameters

None

Return Yalues
The function is expected to return TRUE if the timeout is to be respected (the
lock fails), or FALSE to try it again.

79

EliTech Development, Inc.

Function EtLockTimeOutMsg% ()

This function is called when ever a lock attempt with a timeout time greater
than zero times out.

Before this routine is used EtlnitQ) MUST be called to initialize the file lock
manager.

If you wish to write your own generic "handler” for "system timeout" lock
collisions, you can add your own code to this routine. Itis located in the source
code module ETLOCK.SUB. See Section 4(D) "Introduction to Record
Locking" for more information.

Parameters
None
Return Values
The function is expected to return TRUE if the timeout is to be respected (the
lock fails), or FALSE to try it again. ~u
St

Reference - High-level Routines

Sub EtSetLockTimeOut (T&)

Sets the "system" lock timeout value.

This is the time out used for data record locks and most system level locks.
Some system level locks use an infinite time out and some use a zero time out
where appropriate.

Before this routine is used EtInit() MUST be called to initialize the file lock
manager.

The routine EiGetLockTimeout returns the current timeout setting.

Barameters
T&
The value defines the number of clock ticks for the time frame during which

a lock will be retried. There are about 18.2 clocks ticks per second.

Any attempt to set the time out to a value less than 18 (about 1 second) will
cause it 1o be forced to 18. The maximum value allowed is 1,572,480 (24
hours).

Returp Yalues

None

81

EllTech Development, Inc.

6 (C) Library Support Routines

The following general purpose assembly language routines are available for
use in your programs. They may even be used in programs which do not invoke

other E-Tree Plus database functions.

EtCopyMem
EtCRC32

EICVI

EICVL
EwDiskSpace
E(ErrCode
EFileClose
EtFileDelete
E(FileExist
E(FileFlush
EtFileOpen
EtFileRead
EtFileSize
EtFileWrite
EtFillMem
EtFreeDiskSpace
EtGetFilePointer
Etlnit

ELockRegion
EtMemAlloc
EtMemRelease
EiMemReleaseAll
E(MemSeg
EtMemSize
ENetworkType
EtPeekB

EtPeekl

EtPeckL

EtPokeB

EtPokel

EtPokeL
ElRelease AllLocks
EtSetFilePointer
EtUnLockRegion

82

Reference - Library Support Routines

Sub EtCopyMem (BYVAL
BYVAL
BYVAL
BYVAL
BYVAL

SrcSeg%,_
SrcOffset%,
DestSeg%,_
DestOffset%,
Bytes&)

Copies the contents of memory from location to another.

Parameters

SrcSeg%

The segment of the memory block to copy from.

SrcOffset%

The offset of the memory block to copy from.

DestSeg%

The segment of the memory block to copy to.

DestOffset%

The offset of the memory block to copy to.

Bytes&
The number of bytes to copy.

Retur 1

None

83

EliTech Development, Inc.

Function EtCRC32& (BYVAL MemSeg%, _
BYVAL MemOffset%, _
Bytes&, _
StartingCrc&)

Calculates a 32-bit CRC value on a block of memory.

Parameters

MemSeg%
Segment of memory block on which to compute CRC

MemOffset%
Offset of memory block

Bytes&
Size of the memory block in bytes (64535 max)

StartingCRC&

Set to Zero if the current block of memory is the first of several blocks (or
the only block). Set to the CRC value from a previous block of memory if it
is the second (or third, or fourth, etc.) in a group of memory blocks.

This routine will calculate the CRC for a memory block up to 65535 bytes
long. If you need to calculate a CRC on a block of memory larger than that,
set StartingCRC& to zero for the first block and then set it to the result of each

block calculated for the remaining blocks.

Return Yalues

The function returns the 32-bit CRC for the block of memory.

Reference - Library Support Routines

Function EtCV1% (Value&)
Convert a long into an integer (4-bytes down o 2-bytes).
PRarameters

Value&

The value to convert

Return Values

Returns the long integer's least significant word (truncates the LONG into an
INTEGER)

85

EliTech Development, Inc.

Function EXCVL& (Value%)

Converts an integer to an long (2-bytes up to 4-bytes).

Paramefers

Value%

The integer value to convert

Return Yalues
The function retumns a value from zero 65535 that results from storing the
2-bytes of the integer into the low order two bytes of a long.

The sign bit is not extended in the long value returned. This cah result in
negative integer values being converted lo positive long values.

Reference - Library Support Routines

Function EtErrCode% ()

Get the error code set by the last E-Tree Library function called that generated
a DOS error.

Parameters

None.

Return Valyes

The function returns the error code.

87

EliTech Development, Inc.

Sub EtFileClose (FileHandle%)
Close a file opened using EtFileOpen().

Parameters

FileHandle%
The DOS file handle for the file (as retumed by EtFileOpen%())

Return Yalues

The function returns zero for success or an error code.

Relerence - Library Support Routines

Function EtFileDelete% (FileName$)

Deletes a file. Wildcard characters are not allowed.

e Parameters
FileName$
The file specification for the file or files to delete. DOS wildcard characters

are accepled.

Since wildcard characters can be used, many files can be deleted with one
call. Be careful that the files specified are indeed the files you want deleted.

Return Values

The function returns zero for success or an error code.

EllTech Development, Inc.

Function EtFileExist% (FileName$)

Check for the existence of a file.

Parameters

FileName$
The path/name of the file in question. The drive/path is optional.

Return Yalues

The function returns TRUE (-1) if the fite is present and FALSE if the file
does not exist or if a DOS critical error occurred. The EtError() function can
be used to fetch DOS error codes (if any).

90

Reference - Library Support Routines

Function EtFileFlush% (BYVAL Handle%)
Flush the DOS file buffers associated with an open file.
<= Parameters

Handle%.
The DOS file handle for the file

Return Values

The function returns zero (false) if successful or non-zero (true) if an error

occurred.

91

EllTech Development, Int.

Function EtFileOpen% (FileName$, _
BYVAL AccessMode%,_
Handle%)

Open a file in random (binary) mode. When a file is opened the file pointer is
set to zero (the beginning of the file). All file I/O using EtFileRead%() and
EtFileWrile%() is performed starting at the file read/write pointer location in
the file. To read or write a récord from the file you must set the file pointer to
the correct location before performing the read or write.

Parameters

FileName$
Name of the file to open. Drive/path is optional.

AccessMode%
Bit-mapped 1o represent the type of lock and network access rights, where
one of the following values is used. (Use a value of zero if not running on a
network):
0 - Compatibility mode (Network services not used)
16- Deny all (No access permitted)
32- Deny write (Read access only allowed)
48- Deny read (Wtite access only allowed)
64- Deny none (Réead/write access allowed)

Return Values

The function returns zero for success or an error code. Routine-specific error
codes include:

-1 if a null FileName$ is passed

-2 is returned if our internal file handle table is full (max of 20 open files)

Any other value represents a DOS error code

92

Reference - Library Supponrt Routines

Function EtFileRead% (BYVAL Handle%,_
BYVAL Segment%, BYVAL Offset%, Bytes&)

Function EtFileWrite% (BYVAL Handle%,_
BYVAL Segment%, BYVAL Offset%, Bytes&)

Read/Write bytes from/to a file starting at the current File Pointer location.
The file read/write pointer is set using EtSetFilePointer%(). All file [/O using
EtFileRead%() and EtFileWrite%() is performed starting at the file read/write
pointer location in the file. To read or write a record from the file you must set
the file pointer to the correct location before performing the read or write.
When a file is opened the file pointer is set to zero (the beginning of the file).

Parameters

Handle%
The DOS file handle for the file to read from or write to.

Segment%
The segment of the memory block to write data from or read data to.

Offset%

The offset of the memory block to write data from or read data to

Bytes&
The number of bytes to be read or written. A max value of 65535 bytes may

be used. If a value of zero is passed, the file will be truncated or extended to
the current pointer position.

Return Values

The function returns zero for success or an error code. A value of -1
indicates that a file handle number of 0 was passed. All other values
represent DOS error codes.

If the result is zero, Bytes& is returned containing the actual number of bytes
read from or written to the file. These values can be different if you attempt
to read past the end of the file, or write more bytes than can be held on the
current drive (disk full during write).

a3

EllTech Development, Inc.

Function EtFileSize& (BYVAL Handle%)

Get the current size of an open file.

Parameters

Handle%.
The DOS file handle for the file

Return Values

The function retumns the file size ora negative number as an error code. A
value of -1 is returned if an invalid handle was passed.

94

)

Reference - Library Support Routines

Sub EtFillMem (BYVAL MemSeg%, _
BYVAL MemOffset%, BYVAL Bytes&,_
BYVAL FillByte%)

Fills a block of memory with a specified value.

Parameters

MemSeg%
The segment of the memory block to fill

MemOffSet%
The offset of the memory block to fill

Bytes&
The number of bytes to fill

FillByte%
The fill value to use (Only the low order byte of FillByte% is used).

Return Yalues

None

95

EllTech Development, Inc.

Function EtFreeDiskSpace& (Drive%)
Report the amount of free space on a disk.

Parameters

Drive% =
0 for default drive
1..26 for drive A: ... Z:

Return Yalues

The function returns the amount of free disk space on the drive indicated.
Negative values indicate an error.

Sce also EtDiskSpace&()

Reference - Library Support Routines

Function EtGetFilePointer& (BYVAL Handle%)

Get the current position of the file read/write pointer for an open file.

Parameters

Handle%.
The DOS file handle for the file

Return VYalues

The function returns zero for success or an error code. A value of -1 is
returned if an invalid handle was passed.

Function EtSetFilePointer% (BYVAL Handle%,_
BYVAL Position&)

Sets the file read/write pointer for an open file. All file I/O using
EtFileRead%() and EtFileWrite%() is performed starting at the file read/write
pointer location in the file. To read or write a record from the file you must set
the file pointer to the correct location before performing the read or write.
When a file is opened the file pointer is set to zero (the beginning of the file).

Parameters
Handlie%.
The DOS file handle for the file

Position&
The desired location for the file read/write pointer. This is an absolute byte
offset from the beginning of the file. A value of zero will position the pointer
at the first byte in the file.

Return Yalues

The function returns zero for success or an error code. A value of -1
indicates that a handle number of zero was passed Lo the routine.

97

EliTech Development, Inc.

Sub Etlnit ()

Initialize the E-Tree Memory manager to provide a means to release all
resources acquired regardless of how the program terminates.

-
This routine installs a hook into int 21h function 4ch (terminate). When the
program terminates normally, we make sure all locks are removed, all memory
is released, and all files are closed.
If this routine is called a second time during the execution of a process, it still
takes the above actions. This is a safeguard in the event you are running the
program within the QB/PB development and have to restart it.
This routine is called by EtInitManager() as part of its processing. The only
reason you would need to call this routine directly is if you want to use the
E-Tree memory management, file I/O, or file locking routines in a program
that does not use the other E-Tree Manager routines.
Parameters
None
Return Values -
None
-~

98

Reference - Library Support Routines

Function EtLockRegion% (BYVAL Handle%,_
BYVAL FileOffset&, BYVAL RecordLength&)

Sub EtUnLockRegion (BYVAL Handle%,_
BYVAL FileOffset&, BYVAL RecordLength&)

Lock and unlock a region of a file using locks appropriate to the current type of
neiwork being used. The lock is attempted only once and the result returned
immediately. Use EtLock%() if you want o have a lock timeout value used
during the lock atiempt.

For PDS 7.x EtUnLock() is declared as an ALIAS for EtUnLockRegion(). For
all other compilers EtUnLock() simply executes EtUnLockRegion() with the
arguments passed.

The arguments used when EtUnLockRegion() is called must maich exactly to
the arguments used by an earlier call to EtLockRegion%()

Before either of these routines is used EtInit() MUST be called to initialize the
file lock manager.

Parameters

Handle%
The DOS file handle for the file

FileOffSet&
The offsct of the start of the region in the file

RecordLength&

The size of the region in bytes

Return Values

The EtLockRegion%:() function returns zero for success or an error code.
If unsuccessful, the value returned will be one of the following:

-1- Bad lock length
-2- Lock Table full

Positive error codes reflect a DOS or Novell error.

99

EllTech Development, Inc.

Function EtMemAlloc% (Bytes&, MemType%)
Reserves a block of DOS or EMS memory.

Before this routine is used EtInit() MUST be called 1o initialize the memory
manager.

Parameters

Bytes&
The number of bytes to allocate.

DOS memory will be allocated in paragraph (16 byte) increments and EMS
memory will be allocated in page (16K byte) increments. A maximum of
65536 bytes can be allocated in a single call.

MemType%
Defines the type of miemory to allocate. If zero, we'll attempt to allocate the
memory from EMS first. If sufficient EMS is not available, we'll attempt to
allocate it from DOS.: A value of 1 directs us to allocate the memory from
EMS only. A value of 2 directs us to allocate the memory from DOS only.

Return Values

The function returns k value greater than zero for success or negative error
code.

If the memory allocation is successful, the result of the function is the
"handle" to the memory block. Use the EtMemSeg% function to get the
actual segment address of the memory block. .

If the number of bytes requested is not available, Bytes& will be retumned
with the size of the largest available memory block.

100

Reference - Library Support Routines

Function EtMemRelease% (BYVAL MemHandie%)

Releases a DOS or EMS memory block previously allocated with the
EtMemAlloc routine.

Before this routine is used EtInit() MUST be called to initialize the hemory
manager.

Parameters

MemHandle%
A handle to a memory block previously assigned by the EtMémAlloc()
routine.

Return Values

This function returns FALSE (0) if successful or TRUE (-1) if unsuccessful.

Sub EtMemReleaseAll ()

Releases all memory blocks previously allocated with the EtMemAlloc routine.

Parameters

None

Return Values

None

101

EliTech Development, Inc.

Function EtMemSeg% (BYVAL MemHandle%)

Returns the segment address for a memory block allocated using
EtMemAlloc()

If the memory block is in EMS, the block is mapped into the page frame
beginning at physical page 0. There can be only one EMS buffer accessed at
any given time even though more than one can be allocated. You cannot copy
directly from one EMS buffer to another.

If the memory block is DOS memory, the block will always start at offset zero
in the segment returned.

Before this routine is used EtInit() MUST be calied to initialize the memory
manager.

Parameters

MemHandle%
The handle to a memory block previously allocated by the EtMemAlloc()
routine.

Return Yalues

The result of the function is the target memory segment. If zero is returned,
the MemHandle% passed was invalid.

102

Reference - Library Support Routines

Function EtMemSize& (BYVAL MemHandle%)
Returns the actual size of a memory block allocated with EtMemaAlloc.

= Before this routine is used EtInit() MUST be called to initialize the memory
manager.

Parameters

MemHandle%
A handle 1o a block of memory allocated using the EIMemAlloc() routine.

Return Yalues

The function retumns the actual size of the memory block allocated. Since
EMS memory is allocated in 16k-byte blocks and DOS memory is allocated
in 16-byte blocks the block allocated may not be exactly the size requested
when the block was originally allocated.

103

EliTech Development, Inc.

Function EtNetworkType% ()

Delermine the type of network locks currently being used by
EtLockRegion%().

Before this routine is used EtInit() MUST be called to initialize the file lock
manager.

Parameters

None

Return Yalues

The function returns:
-1- EtInit() has not yet been called
0 - No network locks are being used
1 - Novell
2 - NETBIOS (or other network which uses DOS 3.1 locks)

Sub EtSetNetworkType (BYVAL NetType%)
Set the type of network locks to be used by EtLockRegion%()

Calls to this routine will be ignored after the EtLockRegion%() routine has
been called once.

Parameters

NetType% is:

0 - No Network locks

1 - Novell network locks
2 - DOS 3.1 network locks

Return Yalues

None

104

Reference - Library Support Routines

Function EtPeekB% (BYVAL MemSeg%,__
BYVAL MemOffset%)

Function EtPeekl% (BYVAL MemSeg%,
BYVAL MemOftset%)

Function EtPeekL& (BYVAL MemSeg%,_
BYVAL MemOffset%)

Read a memory location and return the value stored there.

Parameters

MemSeg%

The segment of the memory location to read

MemOffSet%

The offset of the memory location to read

Return Yalues

The function returns the value stored at the memory location.

Notice that EtPeckL& returns a Long Integer value.

EtPeekl and EtPeekL can retum negative values depending on the data stored
in the memory being peeked because BASIC treats the values returned as
signed integers. If the data stored at the memory location has the high-order

bit set, BASIC will consider the value negative.

EtPeekB returns a value from 0-255.

105

EliTech Development, Inc.

Sub EtPokeB (BYVAL MemSeg%, BYVAL MemOffset%,_

BYVAL Value%)

Sub EtPokel (BYVAL MemSeg%, BYVAL MemOffset%,__
BYVAL Value%)

Sub EtPokelL (BYVAL MemSeg%, BYVAL MemOffset%,
BYVAL Value&)

Poke (write) a value at a location in memory.

Parameters

MemSeg%

The segment of the memory location where the value will be written

MemOffSet%

The offset of the memory location where the value will be written

Value (& or %)

The value to write to the memory location

Notice that ElPokeL. writes a LONG integer argument. EtPokeB only writes the
low order byte of the integer value.

Return Values

None

106

Reference - Library Support Routines

Sub EtReleaseAllLocks ()
Releases all active locks put into place by the EtLockRegion routine.

Before this routine is used EtInit() MUST be called to initialize the file lock
manager.

Parameters

None

None

107

EliTech Development, Inc.

6 (D) Low-Level Support Routines

Since the majority of E-Tree Plus customers don't have a need for or an interest
in the low-level index and file management routines, we chose not to document
them in this revision of the manual. However, you will find a file on your
distribution diskette called LOWLEVEL.EXE. Just run this program and the
documentation for the low-level functions will be extracted into a standard
ASCII text file called LOWLEVEL.DOC.

If you would like 1o see the low-level routines included in future revisions of

the E-Tree Plus documentation, drop us a line. If there is sufficient initerest in
it, we will certainly be happy to do so.

6 (E) Routine Organizaiion

The following is a list of all E-Tree's BASIC procedures and the soutce code
module in which that can be found:

ETLINK.SUB . Function E\DLinkInsert%
Function EtDLinkRemove%
Function EtSLinkInsert%
Function EtSLinkRemove%

ETLOCK.SUB Function EtGetLockTimeOuté&
Function EtLock%
Function EtLockNoTimeOutMsg%
Function E(LockTimeOutMsg%
Sub EtSetLockTimeOut
Sub EtUnLock

ETREECRI.SUB Function EtAddKeyDef(%
Sub EiCreateIndex
Sub ElCreatelndex?2
Sub EtDeletelndex

ETREECRR.ASC Function EtAddFields%
Sub EtCreate

ETREEHI.ASC Function EiGetCurRecAdr&
Function EtGetCurrentRecordCRCé&

108

Reference - Library Support Routines

Function EtGetCurVarAdr&
Function EtGetCurVarLen&
Function EtGetFileHandle%
Function EtGetIndex$

Function EtGetPageSize&
Function EtGetRecordsize&
Function EtGetVariableFlag%
Function EtInitManager%
Function EtInitManagerDefault%
Sub EtMakeRecordCurrent

ETREELOW.SUB Function EtCheckDataPageMap%
Function EtCheckMemoryBufferSize%
Function EtDeleteVarData%
Function EtFindIndexDescription%
Function EtGetFreePage%

Function EtLogSoftLock%
Function EtPageToFromList%
Function EtRWPage%

Function EtSetndexInternalMin%
Function EtSetUpCommon%
Function EtUnGetFreePage%
Function EtUnLogSoftLock%
Function EtVarFindDesc%

Sub EiCopyCommonToTable Static
Sub EtMapDataPage

ETREEMID.SUB Function EtAddToAllIndexes%
Function EtCompareKeys%
Function EtDcleteFromAllIndexes%
Function EtDeleteIndexDescription%
Function EtDeleteIndexPages%
Function EtDeleteRecord%
Function EiGetAutolnc%

Function EtGetFields%
Function EtGetKeyDef%
Function EtGetKeyNames%
Function EtRebuildIndex%
Function EtResetDatabase%
Function EtResetHeader%
Function EResetRecord%
Function EtSetAutolnc%

109

EliTech Development, Inc.

Function EtSoftLockDataRecord%
Function EtStat%

Function EtUnSoftLockAllDataRecords%
Function EtUnSoftLockDataRecord%
Function EtUpdateAllIndexes%

Sub E(BuildKey

Sub EtCalcOptimumPageSize

Sub EtRetricveByAddress

ETREEMOV.SUB Function EtBOF%
Function EtEOF%
Function EALOF&
Function EtSeekRecord%
Sub EtMoveFirst
Sub EtMoveLast
Sub EtMoveNext
Sub EtMovePrevious
Sub EtSeekEQ
Sub EtSeekGE
Sub EtSeekGT
Sub EtSeekLE
Sub EtSeekLT

ETREEUSR.SUB Function EtTextComp%
Sub EtClose
Sub E(CloseAll
Sub EtDelete
Sub EtInsert
Sub EtOpen
Sub EtRetrieve
Sub EtRetrieve2
Sub EtSetIndex
Sub EtUnLockCurréntRecord
Sub EtUpdate
Sub EtUpdate2

ETREEVAR.SUB Function EtAddVarData%
Function EtChangeVarData%
Function EtGetVarPage%
Function EtRetrieveVarSection%
Function EtVarFillDesc%

110

Reference - Library Support Routines

Function EtVarFindPage%

Sub EtRetrieveVariable

Sub EtRetrieveVariable2

Sub EtRetrieve VariableBy Address
Sub EtUpdateVariable

Sub EtUpdateVariable2

Sub EtUpdateVariableBy Address

ETSUNDRY.ASC Function EtDiskSpace&

ETINDEX.ASC Function EtDeleteDupe%
Function EtDcleteKeyFromIndex%
Function ElDcleteKeyFromNode%
Function E(FindEndOfIndex %
Function EtGetNodeStats%
Function EiGetSiblings%
Function EtndexGetVarPage%
Function EtIndexLock%
Function EtIndexPageToFromList%
Function EtlndexVarFindPage%
Function EtInsertDupe%
Function EtlnsertKeyInIndex%
Function EtInsertKeyInNode%
Function EtMergeNodes%
Function EtRotateNodes%
Function EtScarchDupe%
Function EtSearchIndex%
Function EtSearchNode%
Function EtSetParents%
Function EtSplitNode%
Sub EtlndexUnLock

111

EliTech Development, Inc.

Section 7
The Nitty-Gritty

7 (A) General Information

For those of you interested in the low-level details about how E-Tree Plus
works, how it is organized, the structure of an E-Tree database file, or how
b+trees are created and maintained, this section is for you. This is by no means
"required reading.”

7 (B) Low-Level Locks

This section gives a more in-depth look at how E-Tree Plus deals with locks
and locking data records. All the details of locking that are covered in this
section are handled automatically by the routines provided in the E-Tree Plus
Library. This information is provided just so you'll know what we are up to.

There are a few clearly defined and simple protocols for accessing pages in the
file and data on the pages. As long as these protocols are followed by all tasks
trying to get at the data in these files, the data can be safely accessed.

Most of the protocols involve the use of 'scmaphore’ flag data items.
Semaphores are integer values that are incremented to place a control on a
resource and decremented to release the control from the resource. The
purpose of the control can be ta limit the number of tasks making use of a
resource, as for a program that Is licensed to only 5 users, or to limit the type
of access to a resource, as in making a file region read-only. A resource is not
completely free unless the semaphore has a value of zero.

For our file access protocols, every page we read or write will be controlled by
a file-region lock on the page. The page cannot be accessed in any way until
the lock succeeds. Once the lock succeeds, a semaphore may need to be
checked before further action id taken. Some pages and data items use
semaphores and some don't. In general, operations that alter data must check
any semaphores used to control the data; operations that only read the data may
not need to check the semaphore. If the semaphore is not zero you must not
change any part of the data ilem controlled by the semaphore.

If you need to make the data item read only then increment the semaphore.
When you are past the point of needing to ensure that the item didn't change

112

-

~—u

The Nitty-Gritty

then you must release your control of the semaphore by decrementing it.
Semaphores must only be incremented or decremented when the page they are
on has a file-region lock applied to prevent two tasks from attempting to
change the semaphore at the same time.

Here are the steps:

Rai maphor

1) Lock the page
2) Increment semaphore
3) UnLock the page

T maphor

1) Lock the page
2) Decrement semaphore
3) Unlock the page

Since no other process can access the page while it is locked, the semaphore is
guaranteed to be stable during the raise and lower steps. 1f a process
successfully raises a semaphore, it can be reasonably sure that it will be safe to
lower it since no other process will alier the data in the page if the semaphore
is already set. This assumes, or course, that everybody plays by the rules.

Simply using semaphores and hard file-region locks does not make all
multi-user data accesses a snap. You will have to balance the time a lock is in
place and the impact of that lock against ensuring that access by another task
doesn't preempt completion of your present task.

The simple case of reading the database doesn't actually require any file
locking. However, other file operations will be carried out by other tasks as
your task is reading each record. This makes it possible, and even likely, that
the record you are about to read is locked by another task. This requires that
you lock the record before you attempt to read it o ensure that you have access
to it. If the lock fails you have the choice of wailing to retry the lock or
abandoning the operation all together.

The more complex task of editing a record gives a more complete picture of
the potential problems. When you need to edit a data record you will first read
the current data, make changes to the data, and then write the data back after
you are done editing. The edit cycle requires that you prevent others from
updating the record while your are editing and that you be assured of read/write
access when it comes time to write your changes to the file,

113

EliTech Development, Inc.

There are three methods of handling the situation. The first is to lock the file

region and leave it locked for the duration. The second and third involve using
semaphores to control write access to the data while you are processing your

edits. -

If you place a file-region lock on the data for the duration of the
read-edit-update cycle, you will have absolute assurance that the record will
not be altered during your editing and that the record will be available when
you are ready to write the updates back to the file. However, the record will be
unavailable for any kind of access by other tasks for the duration, no matter
how long it takes.

If you lock the region, raise the semaphore, read the data, and unlock the
region, other tasks can read the data without hesitation while you are
processing your edits. As long as the other tasks do not need to write to the file
this will work well until you need to write your changes back out. When it
comes time to write your changes, you will have to lower the semaphore and
then check it to see if anyone else raised it since you started your edit cycle. If
it has been raised you must either abort the edit or sit in a loop checking the
semaphore until it is zero before you can write your updates. This is not much
different from having a hard-lock on the data, except yoy have to wait instead
of others.

<

The only reasonable solution is to require all tasks that must make updates to
data to check the semaphore first and not even begin the edit or update
procedure unless the semaphore is clear. This allows any task that needs to
read the data to have fairly free access to it and guarantees that a semaphore
that can be raised will provide clear access to the data for updates until the
semaphore is lowered. It still requires that tasks needing to alter or edit the
data must wait until a lock (the semaphore in this case) on the data is released.
Since the edit-cycle will tend to be less frequent that simple reads, this method
will provide the best compromise between data availability and data protection.

At first glance this might make it seem that only binary serhaphores are needed

to protect data. However, there are situations where it is déesirable to

write-protect a data item that you are not going to be updating, but that needs

1o be controlled for a significant length of time. The answer is to use a -
semaphore that is incremented at the beginning of each access and

decremented at the end. This lets several tasks access the data without worry

of it changing until they are all done. Any process that neéds to update the

data would wait until the semaphore was clear and then hatd-lock the data

during the update.

114

The Nitty-Gritty

7 (C) Global Data Used Internally by E-Tree Procedures

The file ETCOMMON.BI contains the declarations for all the global data used
by the E-Tree Plus Library. These data are stored in a blank common block
«. and must be available to all routines during the full course of the program.
These data items should not be manipulated directly except by the E-Tree Plus
routines and in accordance with their definitions. Improper alteration of this
data can cause irreparable damage (o any databases currently open or opened
during the course of the program. Basically, you should leave this stuff alone.

EtManagerStatus%
Defines the current state of the E-Tree Manager
0 - notinitialized
1 - initialized, databases are either currently opened or have
never been opened
-1 - initialized, databases were open but are all closed now
EfFileStructureID$

Used to tag databases with embedded version information and verify that an
opened database is compatible with the currently executing version of the
E-Tree Manager.

Defined in EtInitManager%()

EtMaxOpen%
The current maximum number of open databases allowed. Used to define the
limits of the arrays used by the E-Tree Manager to manage open databases.

Defined by the argument passed to EtlnitManager%()

EtCurrentOpen%
The Current number of databases that are opened using EtOpen().

If EtCurrentOpen%s is greater than EtMaxOpen% then no more databases can
be opened.

Incremented by EtOpen(), Decremented by EiClose(), Zeroed by
EtInitManager%/().

4™ EtLockTimeOut&
This defines the standard system time out for lock collisions. A lock that fails
will be retried until the number of clock ticks (18.2 per second) defined by
this value expires.

The default value of 182 (10 seconds) is set by EtlnitManager%().

115

EliTech Development, Inc.

Can be read using EtGetNetworkTimeQut&(); carl be Set using
EtSetNetwork TimeOut()

Even though this is a global variable that can be atcessed directly, you should
only use the routines provided to read or set it. Future versions of E-Tree
Plus will always make the assumption that it is actessed using only those
routines.

EtFileBufferHandle%
An E-Tree Memory Handle (see EtMemAlloc) that indicates a memory buffer
used for the E-Tree Manager's file /O space.

Defined and memory allocated in EtOpen() and ElCreate(). Don't dare alter
this value under any circumstance.

EtFileBufferType%
Defines the type of memory that will be used for the E-Tree Manager's file
1/O buffer. This defaults to zero which cauges the bulfer type to default to
EMS if EMS is available or to DOS memory if EMS is not available.

If you need to change the type of memory used for the buffer you must set
this variable before EtlnitManager%() is ever called. Once EtInitManager%()
has been called, either directly or through EtOpen(), THIS VALUE MUST
NOT CHANGE or you will find your memory hopelessly corrupted and your
databases hopelessly damaged.

EtScraichHandle%
An E-Tree Memory Handle (see EtMemAlloc) that indicates 2 memory buffer
used by the E-Tree Manager as a scratch pad.

Defined and memory allocated in EtOpen() and EtCreate(). Don't dare alter
this value under any circumstance. This buffer MUST be in DOS memory
arena only because of the performance considerations involved when copying
between EMS pages not simultancously mapped ihto the page frame. Do not
change the type buffer used in the code.

This buffer will be as large as the largest Data Record size of cﬁnenlly open
databases or 512 bytes, whichever is larger.

EtTable$()
A one-dimensional string array that contains information used to manage
each open database. Each element corresponds to a value of an E-Tree

Handle.

Offset Size (bytes) Description
0 2 DOS file handle
2 4 Page size

116

N

The Nitty-Gritty

6
10
12
14
16
20
24
28
32
34
36
40

[IR SR S N k. S0 SR SR

Record size

Variable length flag

Reserved

Reserved

Current record address

Current record CRC of fixed-length data
Variable length data address

Variable length data length

BOF flag

EOF flag

Max fields allowed on variable length data page
Reserved

Use the routines provided in the E-Tree Library to access the data stored in

this array.

Altering the data stored in thid array will cause untold damage to your open

databases.

E(FileNames$()

A one-dimensional array that holds the file names of all open databases.

o EtKeyDesc$()

A one-dimensional siring array that contains information used to manage the
current index for each open databas¢. Each element is 78 bytes in length and
can be broken down as follows:

Offset

0
30
34
36
40
42
46
50
52
56
60
64
- 68
72
76

Length

(78]
[«

[R i i T SR N N S NG SR N

Description

Index name

Magic number

Key number

Node

Node type

Previous leaf

Next leaf

Keys on leaf

Duplicate descriptor address
Offset into dupe page for section
Offset into section

Length of section

Section awner

Next section descriptor address
Section riumber

Use the routines provided in the E-Tree Library to access the data stored in

this array.

. 117, .

ENTech Development, Inc.

Improperly altering the data stored in this array will cause untold damage to
your open databases.

EtSoftLockedRecords&()
A two-dimensional array used to store the address of each data record that
has a soft-lock (semaphore) applied. The first dimension corresponds to a
handle value and the second to the data record slot s assigned using
EtSoftLockDataRecord() (see below),

The value stored is the physical address of the data record that is locked. For
variable-length records, this is the address of the descriptor block for the
variable length data.

This array is, and should only be, accessed using the data lock routines
provided in the E-Tree Library only.

Altering the data in this array could render data records in the database
read-only until one of the EtResct routines is used {o clean it up.

) .
EtSofiLockedTypesto > V¢ Lviger Used
A two-dimensional array used to store the type of ¢ach data record that has a
soft-lock (semaphore) applied. The first dimension corresponds to a handle
value and the second to the data record slot as assighed using
EtSoftLockDataRecord() (see below),

The value stored is a zero for a fixed-length data record or a one (1) for a
variable length data record.

This nrra); is, and should only be, accessed using the data lock routines
provided in the E-Tree Library only.

Altering the data in this array could render data records in the database
read-only until one of the EtReset routines is used to clean it up.

EtSoftLockedCount%()
A one-dimensional array that stores the number of soft-locks applied for each

open database.

This array is, and should only be, accessed using the data lock routines
provided in the E-Tree Library only.

Altering the data in this array could render data records in the database
read-only until one of the EtReset routines is used to clean it up.

7 (D) E-Tree Plus Database Structure

118

The Nitty-Gritty

At the lowest level, almost all of the file I/O is performed on chunks of file
called 'pages.’ The size of a page in the file is defined when EtCreate() is used
to create a new database and cannot be changed. Page sizes can range from
512 bytes to 65535 bytes. 65536 isn't used as the maximum because the
standard DOS file I/O functions have a limit of 65535 bytes that can be read
or writlen at one time.

Each page has a fixed amount of ovethead required 1o manage its allocation
and usage. This portion of the page overhead is always located in the first 6
bytes of the page:

Page Type ID (2 bytes)

-1 Free Page
Header Page
Field Information Page
Key Definition Page
Fixed-Length Data Page
Fixed Length data page with deleted records
Variable-Length Data Page
Index Page Intenal Node
Index Page Leaf Node
Index Page Duplicates Node

0NN D WD -

Page Link (4 bytes)
Pointer to the next page of the same type

Each page type can also have other overhead required that is specific to the
management of the type of information stored on the page. The format of each
type of page is described below.

The Page Type ID is set whenever the page is allocated for a purpose or when
the page is returned to the free page list. The only times the page type should
change are when the page is being added to the free list or being taken from the
free list (the free list also includes new allocations).

The header consists of one page allocated to hold information essential to the
definition, control, and maintenance of the data and indexes. The header page
is always the first page in the file. Most of the essential information is stored
in the first 512 bytes of the header page.

The following are descriptions of the page types and their contents:

1. Header Page

119

EllTech Development, Inc.

OffSet Size (bytes) Descriptidn

0 2 Page ID (0)
2 4 Page Link (Always Zero)
6 4 Page size

10 2 File Status Semaphore

0 = No critical functions in progress
>0 = Entire database is read-only

12 2 File open Count
number of times the file has been opened
Open increments, Close decrements
Some functions should not be executed on a
database that is open

14 2 Reserved
16 64 Version Information
80 2 Reserved
82 2 Reserved
84 4 Record size (fixed length portion only)
88 2 Number of fields in record
90 2 Variable length data flag
0= no variable length field in definition
92 4 First Record Definition Page
96 4 Number of Record Definition Pages
1f this number is zero then the Field
Defirnitions all fit in the header <reserved>
spacd and 'First Record Definition Page’ is
not used
100 4 Key definition page
104 2 Current number of indexes
106 4 Free Pages Root
110 4 Free Pages Count
114 4 Fixed Length Records First Page
118 4 Fixed Length Records Last Page
122 4 Fixed Length Records Page Count
126 4 Data-pages-with-deleted-records root
130 4 Data-pages-with-deleted-records count
134 4 Variable Length Pages Root
138 4 Variable Length Pages Count
142 4 Number of active records
146 4 Maximum Number of Variable Records Per Page

This value determines the amount of space
allocated for the descriptor table in a
variable length data page.

120

The Nitty-Gritty

Defaults to about 5% of the page size and is
determined by the formula:
PageSize \ 320.

This value can be changed if, and only if,
there have been no data records of any kind
added to the database. It is set when the
record definition is added to the database.
150 42 Reserved
192 PageSize-192 Reserved for record field definitions

2. Fixed-Length Data Page

OffSet Size (bytes Description

0 2 Page ID (3)
2 4 Next Page Link
6 4 Previous Page Link
10 4 Deleted-Records page link
Next page with deleted records
14 4 Empty Records Root
Offset of first empty record in page
OFFFFFFFFh = no more empty record space
18 2 Reserved

The following structure is repeated for each active record on the page. The
offsets are relative to the start of the record slot. The record slots start at
offsct 20 into the page and repeat every RecordSize+16 bytes:

0 4 Address of Variable length data (0 if none)
4 2 Semaphore for Data Record (>0 = read only)
6 6 Reserved

12 4 Record CRC

16 RecordSize Fixed Length Record Data

The following structure is repeated for each unused record slot on the page.
The offsets are relative to the start of the record slot. The record slots start at
offset 20 into the page and repeat every RecordSize+16 byles:

0 4 Offset of Next Empty Record on the page
OFFFFFFFFh = no more empty record space
3. Variable-Length Data Page

OffSet Size (bytes) Description
0 2 Page ID (5)

121

EllTech Development, Inc.

2 4 Next Page Link

6 4 Reserved
10 4 Empty Space on this page
14 n Data descriptors

The data descriptors for the variable length data define offsets into the page
for the actual start of the variable length data. The fixed-length data stores
the address of one of the descriptors when the record has variable length data
defined. This allows the variable length data to change size and location
within the page without affecting the fixed length data page.

The space set aside for the data descriptor table is determined by the value
stored in the header page field Maximum Variable Records Per Page.
Multiply that value by 16 to determine the total space. Each data descriptor
has the following layout:

OffSet Size (bytes) Description

0 4 Address of Fixed-Length Record Owner
4 2 Semaphore for variable data
6 4 Next descriptor for this data

10 4 Offset in the page to data

14 4 Length of Data

18 4 CRC of data

22 4 Total length of data

26 2 Section number for this page

28 4 Reserved

Each piece of variable length data is allocated in a contiguous block starting
at the offset stored in its data descriptor.

As variable length fields are deleted, added, or change size the data on the
page is moved around to make sure that all the unused space on the page is at
the end. The descriptors themselves never move.

4. Index Pages

Index Internal Node

OffSet Size (bytes) Description
0

2 PageID(6)
2 4 Previous Page
6 4 Next Page Link
10 4 Parent node
14 2 Keys active
16 2 Pointers aclive

122

The Nitty-Gritty

18 14 Reserved
32 Varies Keys
Varies Varies Pointers
Index Leafl Node
OffSet Size (bytes) Description
0 2 Page ID (7)
2 4 Previous Page
6 4 Next Page
10 4 Parent node
14 2 Keys Active
16 2 Pointers Active
18 4 Previous leaf (smaller key values)
22 4 Next leaf (greater key values)
26 6 Reserved
32 Varies Keys
Varies Varies Pointers
Varies Varies Duplicate Pointers
Duplicates Page
OffSct Size (bytes) Description
0 2 Page ID (8)
2 4 Previous Page
6 4 Next Page
10 4 Free Space on Page
14 Varies Descripiors

The duplicates nodes have the same format and are managed just like
variable-length data pages. The data sections hold arrays of record addresses
that have identical key values.

5. Key Definition Page

OffSet Size (bytes) Description

0 2 PageID (2)
2 4 Next Page Link
6 4 Number of free bytes at end of page

The following structure is repeated for each key defined. Offsets shown are
relative to the beginning of the structure.

0 30 Index Name

123

EllTech Development, Inc.

30
3
35
37
41
43
47
51
53
57

NAHAN DS SN AEN -

Index Root Node Page Number

Duplicates allowed (True = yes)

Number of parts in key

Key length

Minimum number of keys for internal nodes
Index list - Last Page

Index list - Last Page

Semaphore

Magic Number

Reserved.

The following structure is repeated for each key segment defined for this
index. Offsets are relative to the beginning of the structure:

0 4
4 4
8 2

10 2

12 2

14 2

6. Field Information Page

Offset of first byte of segment in record

Length of segment

Data type (for comparisons)

Direction (0 = ascending, NOT 0 = descending)
Non-Modifiable (NOT 0 = non-modifiable)
Reserved

OffSet Size (bytes) Description

0 2 PageID (1)

2 4 Next Page Link

6 4 Number of free bytes at end of page
10 22 <reserved> Pad to 32 bytes
32 PageSize&-32 Definitions (48 bytes each)

The following structure is repeated for each field defined

0 30 Field name
30 4 Field length

0 .. page size if variable length == max size

34 2 Field type

0 = Variable Length

1 = unsigned binary

2 = signed binary

3 = autoincrement (4-byte signed)

4 = integer (2-byte signed)

5 = long integer (4-byte signed)

6 = IEEE single precision (4 bytés)

7 = IEEE double precision (8 bytes)

8 = IEEE extended precision (10 bytes)
9 = PB BCD Fixed Point (8 bytes)

10 = PB BCD Floating Point (10 bytes)

124

The Nitty-Gritty

11 = MBF single (4 bytes)
12 = MBF double (8 bytes)
13 = MS PDS Currency (8 bytes)
14 = ASCII string case insensitive
15 = ASCII string case sensitive
36 4 Last autoincrement value
40 8 Reserved

A variable length field must be the last field defined and there can be only
one per record.

7. Free Pages
OffSet Size (bytes) Description
0 2 Page ID (-1)
2 4 Next Page Link
7 (E) B+Tree Indexes

This section describes the internal structure and workings of the E-Tree Plus
B+Tree indexing system. The stuff here isn't necessary for using E-Tree Plus.
You can ignore this section unless you are really interested or really bored. For
the really bored, there are seemingly endless details on how B+Trees work.

For the really interested, all the algorithms used in our indexing system are
described here; nothing is left as 'an exercise for the reader’.

1. B+Trees

The indexing system chosen for E-Tree Plus is a standard B+Tree method. The
B+Tree method was chosen over other methods (particularly the very similar
B-Tree method) because it lends itself to the structure of the E-Tree Plus file
system and offers advantages for frequently used database functions.

The definition of a B+Tree is a fully balanced tree structure containing nodes
which can be either ‘internal nodes' or 'leaf nodes' with all key values located
on leaf nodes and only leaf nodes pointing to data records. Each node in the
tree, leaf or internal, must contain at least enough keys to make it half full.
After every insertion and deletion the tree is rebalanced (if necessary).

125

EliTech Development, Inc.

The constraints placed on a standard B+Tree (from Knuth) are:

i) Every node has <= MAX descendents

ii) Every node, except the root and leaf nodes, has => MAX\2 descendents

iii) The root must have at least 2 descendents, unless it is a leaf

iv) All leal nodes are at the same level -
v) A non-leaf node with k descendents has k-1 keys

The B+Tree and the B-Tree methods are very similar, differing only in a
constraint placed on the location of data record pointers. A B-Tree allows data
record pointers on any node while a B+Tree requires that data record pointers
be located only on leaf nodes. This added constraint has a few side affects:

1) All tree scarches must travel to the lowest level to find the key degired

2) Since all data record pointers are on leaf nodes, and all leaf nodes are on the
same level (definition of balanced), sequential access of keys is simplified
greatly

3) Since internal nodes do not store data record pointers, it is possible to get

more keys per node, reducing the depth of the tree.

Side affect number (1) is actually a disadvantage for secking a particular key;
however, since the ree is usually very shallow it is not that bad. A starch in a
B-Tree would stop at the first occurrence of the desired key in the tree instead

of continuing to the last level. Side affect (3) helps to make side affect (1)

even less significant. Since internal nodes have less over head the leaf nodes, a
B+Tree a given node size node can contain considerably more keys on internal

nodes that a B-Tree with the same node size. The more keys that can be stored

on a node the fewer levels the tree will require.

Side affect (2) improves the speed of sequential access by guaranteeing that, at
most, only one extra node will need to be read to find the next key in sequence.
In a B-Tree it is possible to require climbing down the tree all the way to the
root and then back up to reach the next key in sequence.

The E-Tree plus implementation of the B+Tree requires that the tree itself store
only unique key values. If an index is defined to allow duplicates, the
duplicates are stored separately from the index. This makes searching and
balancing the tree much easier and faster.

E-Tree Plus uses some variations on the standard B+Tree to allow some added
flexibility in defining the tree parameters to optimize disk space or speed of
insertions and deletions, to provide buffer space on each node, and to limit the
worsl case depth of the tree.

126

The Nitty-Gritty

2. Complete E-Tree Constraints and Definitions:

A 'tree’ structure is formed of 'nodes’. Each node in the tree, except for a
special one called the 'root’ has exactly ohe 'parent’; the root node has no
parent. Each node has zero or more ‘child’ nodes. A node that does not have
any child nodes is called a 'leafl’. A node that has one or more child nodes is
called an 'internal’ node. Each child node is itself the root of a sub-tree that
branches from the parent node [paraphrased from Elmasri].

Each node in the tree has a 'level’ or 'depth’ that is defined as the number of
parent nodes between it and the root node (counting the root node itself). The
root node is at level zero, the root's child nodes are at level 1, and their child
nodes are at level 2, elc.

Two nodes are 'siblings' is they have the same parent. Two nodes are ‘cousins'
if they are on the same level in the tree, but have different parents.

® A leaf node points to data records.

® An internal node points to other tree nodes.

8 Each nodé¢ can hold a MAX number of active keys.

® Each node has room for at least one inactive key and pointer.

® The smallest allowable value for MAX is 3 (therefore the smallest
node will have room for 4 keys and pointers).

® Each leaf node can have MAX pointers.
B Each internal node can have MAX+1 pointers.

® Each internal node, except the root node, must have at least
MIN keys, where MAX\2 <= MIN <= MAX.

® For leaf nodes MIN = MAX\2.

=& For the root node MIN = 1.

= Each internal node must have at least MIN+1 pointers.
= Each internal node with K keys must have K+1 pointers.

= Each leaf node with K keys must have K pointers.

127

EliTech Development, Ihc.

® Keys on leaf nodes must exist in the database.
= Keys on internal nodes need not exist in the database.

® Only unique keys are stored in the tree; duplicate keys are
maintained in 'duplicate bucket' nodes separate from the actual
tree.

® [eaf nodes aré maintained as a doubly linked list to provide
in-order traversal in both directions.

3. Insertion into the B+Tree

Inserting a key into the tree is fairly simple. You need to find the leaf node
that should hold the key and then insert the key into that leaf node. If the leaf
node was not full before the insertion of the new key then the process is
finished.

If the leaf node was full before the insertion (it now has one too many keys) it
will have to be split and the tree balanced. Splitting a node requires only that a
new node be allocated and the keys (including the new key) be distributed
between thé old node and the new one with (MAX+1)\2 keys going to the left
hand node. If there is an odd number of keys then the old node, on the left,
will get the extra key.

If the leaf nodes are split, the balancing act must be carried up through all the
parents that lead to that leaf until one is not split or you run out of parent nodes
(the root gets split).

The rightmost key from the left-hand node (after the split) is inserted into the
parent. If the split nodes were leaf nodes then the key is a copied from the leaf
otherwise the key is moved from the child node. If the key inserted into this
parent overlldws the parent node then it too must be split. The process of
splitting nodes and carrying keys up the tree is repeated until a node is not split
or the root is split.

If the root node is split (whether it was a leaf or an internal node), a new node
is allocated and it becomes the new root of the tree. The key carried from the
split becomes the only key on the root. The only way the tree can become a
level deepet is if the balancing of the tree splits the root to create a new root.

128

-

The Nitty-Gritty

4, Deleting from the B+Tree

Since all keys are held at the leaf level, the key to be deleted must be found
there before it can be deleted. Once it is found it must be deleted from the leaf
node it is on. As long as the deletion does not reduce the number of keys on
the node to less than MAX\2, that is all the work that needs to be done. If the
leaf node holds fewer then MAX\2 keys after the deletion, the tree must be
balanced.

The leaf nodes and the internal nodes require slightly different algorithms for
balancing. The leaf nodes are balanced either by combining the keys on a node
with the keys on one of its siblings and then evenly distributing them across the
two nodes (called a 'rotation’ in some books), or by merging the two nodes into
asingle node. Internal nodes are either combined (just like leaf nodes) or a
key is stolen from the parent node to provide enough keys 1o support a merge.
The differences are in how the merge process is carried out for the two types of
nodes. Because internal nodes have an extra pointer that must be considered,
and because internal nodes can have fewer than MIN keys (if MIN > MAX\2),
extra steps must be taken to ensure that the keys are distributed correctly.

If one of the siblings of the node that the key was deleted from (a leaf) has >
MAX\2 keys, then the two nodes can be combined and the keys evenly
distributed between the two (if there are an odd number, the left node gets the
extra). Since the leaf nodes are siblings, they must have a parent between
them. The key in the parent node that separated the two siblings must then be
updated with the largest key (the rightmost) on the left sibling. This must be
done to ensure that the parent has a correct key (=> all keys to the left) for
future searches to work. If neither of the siblings of the node has > MAX\2
keys theén the node is merged with a sibling leaf removing one node from the
tree. The left sibling is used if it exisls, although either can be used. The
parent niode is updated by deleting the parent key that was between the two
nodes and shifting all the larger keys to the left to replace it.

Once the leaf nodes have been balanced a trip must be made toward the root of
the tree to check the parent nodes to be sure any that were updated are also
balanced. The balancing of the leaf and internal nodes will never affect more
than the two sibling nodes and the parent node used in rearranging the sub-tree.
This trip is unnecessary if the balancing of the leaf nodes did not require any
keys to be removed from the parent. The only way a key would be removed
from the parent is if sibling leaf nodes are merged. Likewise, as the trip
toward the root is made it can be stopped if an internal node is balanced
without reducing the size of its parent node.

129

EllTech Development, Inc.

The parent node is made the current node. If is has at ledast MIN keys and
pointers then the job is done. If not, and it is not the root, then the node is
either combined or merged with one of its siblings. Its siblings are checked to
sce if one is > MIN. If one is found > MIN then the key separating the siblings
(in the next parent node) is borrowed to help in combining the nodes. A key
must be borrowed for internal nodes since they have one pointer more than leaf
nodes that must be accounted for. The key from the parént is placed as the last
key in the left sibling and then the two nodes can be combined, and the keys
distributed between them so that the left sibling has at least MIN keys. The
key in the parent node that separated the two siblings must then be updated
with the largest key (the rightmost) on the left sibling. This must be done to
ensure that the parent has a correct key (=> all keys to the left) for future
searches to work.

If neither of the siblings are > MIN then a key is stolen (as opposed to
borrowed) from the parent node. The keys to the right of the stolen key on the
parent (and their pointers) are shifted left to replace the stolen key. The parent
node will always have at least 1 key before the theft (MIN for the root is 1).
There will always be a key to steal and the parent node will always be checked
after the current node is balanced. The two siblings are merged so that the left
sibling has at lecast MIN keys and the right sibling has whatever is left over. 1f
the right sibling is reduced to zero keys then it is released. The parent node's
pointers are already correct from the shifting done during the theft of the key.
If the right sibling is not reduced to zero then the rightmost key on the left
sibling must be moved to the parent to become the key between the siblings.
The whole business is repeated on the next level toward the root. If the next
level is the root level and the key stolen was the last, then the root node is
released and the current node becomes the root node for the tree.

The index can only shrink by a level when the last key is removed from the
root node. It can only grow a level when an insert propagates node splitting up
1o the root node and it is split to create a new root and a new level.

5. Notes

Allowing the minimum number of keys on an internal node to be something
other than MAX\2 will allow the nodes to hold more keys (on average), tend to
reduce the depth of the tree, and tend to make search for a key faster. It will
not affect the algorithms used to balance the tree or their efficiency. However,
it will tend to cause the tree 1o need balancing on a highér percentage of
insertions and deletions, and to cause the balancing process to affect more
levels each time. The larger the value of MIN the larger this affect will be. It
is assumed that the advantages will be weighed against the disadvantages of
increasing the value of MIN for each application. There are legitimale cases

130

-~

The Nitty-Gritty

where using a MIN value as high as MAX are warranted and even
recommended. Any application that has large node sizes with small keys
(higher order indexes), where disk space is at a premium over insertion and
deletion time, or where the index will rarely or never have keys inserted or
deleted is a good candidate for a larger value of MIN, An indexed help system
is a good example. The content of the help text is not likely to change once the
product ships, and the space required for the index should be minimized.

Using MIN=MAX will guarantee the smallest number of nodes are used by the

index.

6. Pseudocode Examples

In these descriptions keys and pointers are numbered 1. MAX.

A node has q keys active.
s nK() -> key array on a node (leaf or internal)
® pP() -> pointer array (nodes) on an internal node
" n.Pr() -> pointer array (to records) on an leaf node
® (K,n) -> akey and pointer pair
B S0 -> node stack
= SP -> node stack pointer (points al next available element)

n = indexroot

read n
while n is not a leaf

If K <= n.K(1) then
n = h,P (1)

Elseif K > n.K(q) then
n = h,P(q)
Else

Search for K

'start at the root

'search for a leaf that does (or should}
' contaln the value K

'see 1f K is on this node or not
! Is it <= all the keys in the node?

' is it > all the keys in the node?

‘The trall leads through this node

Searth node n for an entry i such that n.K(1)<K<=n.K(1)

n = h,P(1)
End if
s (sp)=n
sp=spt+l
read n
loop

'The above search will always end up at a leaf that should contain K.

Search leaf node n for an element 1 such that n.K{(i) = K

1f found then

131

ElilTech Development, inc.

record = n,.P¥ (i)

else

K is not in the index

end 1f

Insert K

Search tree for key K

if found then
1f duplicates allowed then
fnsert on dupllcate bucket node

else

cannot insdrt duplicate

end {f

Else

'insert K at n

1f leaf node n is not full then
insert K ard polnter into n

else

Pp=q

'node is full -- must be split

‘nodes always have an extra space

insert K ard data record pointer into n

p=p+tl

allocate a new, empty, leaf node

] = (MAX+1)\2 'the lower half goes to n (with J)
move keys J+1 .. p to new node

K = n.K(}) ‘the original K is where it should be
‘now we propagate the split up the tree
'n.K(j) will be replicated in parent

finished ~ false 'a flag

do

If SP = 0 then'empty stack means no parents walting
L}

Elsé

need to make a new level
root = a new, empty Internal node
root.P(1) = n ‘root has one key, the polinters two
root.K{1l} = K ' n and new for the branches
root.P(2) = new

finished = true

‘parents in the trall to be fixed

sp = sp-1 'pop a parent off the stack

n = S(SP) it is an internal node!

insert (K,new) into position

1f n Is not full then'K is now the largest value
‘on the left node after the
'split, If the split nodes
'were leaves then this is
'a Copy, else it 1s a Move

finlshed = true
else 'split internal node

new = a new internal node

p = MAX+1 ‘new has one more than the max
j = MIN

132

The Nitty-Gritty

node n gets temp.K(1) to temp.K())
and temp.P (1) to temp.P({j+1)

move temp.K(3+1l) to temp.K(p)
and temp.P(3+1) to temp.P(p+l} to new

K = n.K{(J)) ‘K(J) is moved to parent
end Lf
end {f
loop until finished
end if
end If
Delete K

Search tree for key K

if not found then 'Key value doesn't exist -- cannot delete
error -- key not found
finished = true

Else ‘delete K from n at |

If there are duplicates of this key then
delete a duplicate

else
delete key from leaf node

-1

ron

q
q
Finished = true 'assume it will go quickly

q
P

‘when lookihg for siblings of any kind of node it is only
‘necessary to consider true _siblings_, not cousins (no
'need to go off the further than the parent node in search
‘of siblings. if the node is the rightmost or leftmost
' (it wlll never be the only unless it is the root) just
‘consider the sibling-off-the-end to be a node with gq=0.

1f p < {MAX\2) then 'leaf has too few keys
‘remember, the root has MIN=1

if left sibling q is > MAX\2 then
combine with left sibling,
re-distribute keys, and update parent key

elseif right sibling g s > MAX\2 then
combine with right sibling,
re~distribute keys, and update parent key

else
1f left sibling g > 0 then
merge with left sibling
else
merge with right sibling
end if

reduce parent node by removing parent key (shift left)

finished = false
end if

‘work back to the root checking parents for underflow

do until (néde = root) or finished
finished = true
if Parent.q < MIN then ‘remember root MIN=1
If Parent == root then'root was emptied above
current node becomes the root

133

ElilTech Development, Inc.

else
n = parent

1f left sibling q is > MIN then
combine with left sibling, re-distribute,
and update parent key

elself right sibling q 1s > MIN then
combine with left sibling, re-dlstribute,
and update parent key
else ‘If the parent is not the root it wlll have at
' least MIN
'"1f the parent is the root it will have at least 1
: remember, the root has MIN=1

1f left sibling q > 0 then

steal from parent to merge with left sibling
else

steal from parent to merge with right sibling
end if

finished = false

'if the parent was reduced to < min or
‘'the root was emptied it will be caught on the next
‘lteration of the loop
end {f
end {f
end Lf
loop
end {f

7. Subroutine Algorithms
Combine 2 sibling nodes, redistribute keys, and update parent

This routine must not be used unless at least one of nodes has > MIN keys and
the other has => MIN-1 keys this is to make certain both nodes that result will
have => MIN keys.

Lq = keys 1n left sibling
Rq = keys In right sibling

If slblings are leaves then
J = (Lg + Rq + 1)\2 ‘this many keys will go in left sibling
‘adding one ensures that the left node
‘will get the extra {f there is an odd
‘number of keys
else
J = MIN
end {f

j1 = 3-1q ‘this many keys to copy from right sibling
' to the left

'L gets keys (and pointers) 1 to j from the
'combined group
'R gets keys J+1 to (Lk+Rk) from the
' combined group
copy keys R.K(1..31) to L.K(Lq+l..Lgt+jl)
fix R so all remaining keys start in flrst position

if the siblings are leaf nodes then

the parent key (the one between the siblings) gets a copy of L.K(J})
end 1f

134

The Nitty-Gritty

Merge two leaf nodes
Copy all keys and pointers from right node into the left starting at the
first unused slot
Release the right node

Shift all keys Iin the parent node one position to the left to replace the
parent key that separated the two nodes and is no longer needed.

Merge (or combine and split) sibling internal nodes

Steal the parent key between the siblings from the parent node.

shift the remaining keys in the parent node to the left to cover the stolen
key.

Put the key taken from the parent In the first unused key slot on the left
sibling node (could be the extra slot)

If all the keys from both nodes {and the stolen key) will fit on one node
move all the keys from the right node to the left

Elself left sibling g < MIN (after parent key added) then
move enough keys and pointers from the right sibling
to make the left q = MIN

end if
1f the right sibling q = 0 then 'a true merge
release the right sibling
else ‘a combine with a steal

move the rightmost key on the left sibling up to the parent
(move it, don't copy it!)
end if

References
The Art of Computer Programming Vol. 3, Knuth. Pgs. 471-479

Fundamentals of Database Systems, Elmasri, Navathe. Pgs. 120-125
Data Structures Using C, Tencbaum, et al, Pgs. 409-448

8. Internal Node
Each key is a fixed size defined by the index key description. The pointers are
the page numbers of the children of the node. The keys and pointets are
logically related like:

P1,K1,P2,K2 P3, ... Kn,Pn, Kx,Px
where the Ps are pointers and the Ks are keys.

Each key, Ky, has children at Py and P(y+1). There is always one extra key
and pointer slot to allow for insertion during a split of a child node

135

EllTech Development, Inc.

9, Leaf Node

Each key is a fixed size defined by the index key description. The pointers are
addresses to data records. The keys and pointers are logically related like:

K1,P1,K2P2,.. KnPn, Kx,Px

where the Ps are pointers and the Ks are keys. There is always one extra key
and pointer slot to allow for insertion.

The duplicate pointers is the address of a descriptor in a duplicates node. If the
address is zero then there are no duplicates for that key.

10. Duplicates Node

Duplicate nodes look just like a variable length pages except for the ID and the
Owner field in the descriptor blocks. The Page ID is 8 for duplicates and 5 for
variable pages. The address of the beginning of the index description block on
the index definition page is stored as the owner (instead of a data record
address). Other than these small differences, the pages are handled exactly as
if they were normal variable length data pages, some the same routines are
used to manage them.

The index leaf node stores the address of one of the descriptors when
duplicates of a key are inserted into the index.

Each section of data on the duplicate node contains an array of data record
addresses for records with identical keys in this index. The array can be many,
many sections in length and span many pages. Obviously, processing
duplicates will degrade the performance of the index. If your database uses a
key which could have a large number of duplicates, you may wish to append a
dummy Autolncrement field to the end of the key definition. This will reduce,
if not eliminate duplicates and enhance performance.

136

Ditferences Between E-Tree, Btrieve and PDS ISAM

Appendix A
Differences Between E-Tree, Btrieve and PDS ISAM

This section provides charts showing E-Tree Plus routines along with similar
routines in PDS ISAM and Btrieve. In each case, the routine that provides the
most similar operation to the E-Tree Plus routine is shown. Btrieve routines
are shown with the name and the operation code. But first we'll discuss the
differences between Birieve's record locking strategy as ¢ompared to E-Trees.

Each E-Tree Plus routine that requires you to specify a lock type, uses a
separate parameler in the CALL syntax to indicate the lock. The LockFlag%
parameter can have a value ranging from 0 to 5 to indicate:

0) No locks needed /”b
1) Lock to access record, unlock when finjs| (system timeout)

2) Lock to access record, leave locked (timeout)
3) Lock to access record, unlock when finighed (i-l?#i;tc timeout)
4) Lock 1o access record, leave locked (i timeout)
5) Assume the record is locked, unlock it when finished

All E-Tree Plus locks can be placed and released without requiring a explicit
call 1o a lock or unlock function. For instance, a lock can be placed when
EtRetrieve() is used to read a record (LockFlag% = 2 or 4) and then released
with EtUpdate() after the record is edited (LockFlag% = 5).

Brrieve allows 'single locks' and 'multiple locks' with 'wait' and 'no wait'
options to be used with all of its Get and Seck operations. The type lock to use
is indicated by using a different operation code (you add 100, 200, 300, or 400
1o the basic Get or Seek operation code). Any lock that is placed using one of
these methods must be released using the Birieve 'Unlock’ operation (# 27).

Btrieve 'single’ locks are equivalent to E-Tree Plus Lock/Unlock types
(LockFlag% = 1 or 3). Btrieve 'multiple’ locks are equivalent to E-Tree Plus
Lock/Leave Locked types (LockFlag% = 2 or 4).

Birieve's 'no wait' lock option is similar to the E-Tree Plus system timeout
option (LockFlag% = 1 or 2), except E-Tree Plus lets you defined a short
period of time for a time out delay and Btrieve simply attempts the lock one
time. Btrieve's 'wait' lock option is similar to the E-Tree Plus infinite timeout
option (LockFlag% = 3 or 4) in that the lock is retried until it succeeds.

137

EllTech Development, Inc.

User-Level Routines

E-Tree Plus PDS ISAM Brrieve
EWBOF BOF status code from Get
EtClose Close Close (1)
EtCreate Open Create (14)]
EtCreatelndex Createlndex Create Supplemental Index (3[)
EtDelete Delete Delete (4)]
EtDeleteIndex DeleteIndex Drop Supplemental Index (32)
FWEOF EOF status code from Get
Etlnsen Insent Insert (2)
EtlnsenVariable n/a Insert (2)
EL.OF LOF Stat (15)
EtMoveFirst MoveFirst Get Key First (62)
Step Key First (83)
FtMoveLast MoveLast Get Key Last (63)
Step Key Last (84)
EtMoveNext MoveNext Get Key Next (56)
Step Key Next (74)
EtMovePrevious MovePrevious Get Key Previous (57)
Step Key Previous (85)
FtOpen Open Open (0)
EtRetrieve Retrieve Get Direct (23)
ERetrieveVariable n/a Get Direct (23)
EiSeek EQ SeekEQ Get Key Equal (55)]
FiSeekGE SeekGE Get Key Greater or Equal (59)
EtSeekGT ScekGT Get Key Greater (58)
FtSeekLE n/a Get Key Less Than or Equal
(61)
EtSeekLT n/a Get Key Less Than (60)
EtSetindex SetIndex specified in parameter block
ErTextComp TextComp$ n/a
EiwUpdate Update Update (3)
FiUpdateVariable n/a Update (3)

138

Differences Between E-Tree, Btrieve and PDS ISAM

High-Level Routines

E-Tree Plus PDS ISAM Brrieve
EtGetlndex$ Getlndex$ n/a
EiGetCurrentRecordAddress n/a Get Position (22)
EtGerCurmrentiRecordCRC n/a nfa
EiGetFileHandle * n/a n/a
EiGetPageSize n/a Suat (15)
EtGetRecordSize LEN Stat (15)
EtGetVariableFlag n/a Stat (15)
EtlnitManager Load PROISAM library Load Brrieve TSR
EtlnitManagerDefault Load PROISAM library Load Btrieve TSR

139

EllTech Development, Inc.

Middle-Level Routines

E-Tree Plus PDS ISAM Birieve
EtAddFields n/a n/a
EtAddKeyDef nfa n/a
EtAddToAllIndexes n/a nfa
EtBuildKey nfa n/a
EtGetFields nfa nfa
EiGetKeyDef n/a Stat (22)
EtGetKeyNames n/a n/a
FtLockDataRecord n/a Get or Step

(+100, +200, +300, or +400)

EtRebuildIndex nfa n/a
EtResetDatabase n/a Reset (28)
EtResetHeader n/a Reset (28)
[itResetRecord n/a Reset (28)
ERetrieveByAddress n/a Get Direct (23)
EtRetrieve VariableByAddress | n/a n/a
EtStat n/a Stat (22)
EtUnLockAliDataRecords n/a Unlock (27)
EirUnLockDataRecord nfa Unlock (27)
FiUpdateAllIndexes n/a nfa

140

Routine Syntax Summary

Appendix B
Routine Syntax Summary

The following is a syntax summary of the user-level, high-level and some
select lower-level routines iricluded in E-Tree Plus.

Declare
Declare
Declare
Declare

Declare

Declare

Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare

Declare
Declare

Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare

Function
Sub
Sub
Sub

Sub

EtBOF% (Handle$)

EtClose(Handle%)

EtCloseAll ()

EtCreate (FileName$, Pagesize&, PreAllocations,
RecordInfo() as EtRecordInfoType, -
Maxkeys%, Handle%, Status%) -

EtCreatéIndex (Handle%, IndexName$, Unique%, _
Coélumns$ (), Statusy)

Sub EtCreatelndek2 { Handle%, IndexName$, Desc() AS_

Sub
Sub
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Sub
Function
Sub
Sub
Sub
Sub
Sub
Sub
Sub
Sub

Sub
Sub

Sub
Sub
Sub
Sub
Sub
Sub
Function
Sub
Sub

EtKeyDescType, Segments$%, Uniques,
Statusy)
EtDeleté (Handle%, Status%)
EtDeletéIndex (Handle%, IndexName$, Status%)
EtEOF% (Handle%)
EtFarAddress& (Segment&, Offset&)
EtFarToSedments& (FarAddress&)
EtFarToOffset& | FarAddresss)
EtFileExist% (FileName$)
EtGetCurRecAdr& (Handle%)
EtGetCurrentRecordCRC& (Handle%)
EtGetCurVarAdré (Handle%)
EtGetCurVarLen&é (Handle%)
EtGetFileHandle% (Handle%)
EtGetIndex$ (Handle%)
EtGetLockTimeouts ()
EtGetPageSizes& ! Handle%)
EtGetRecordSize& (Handle%)
EtGetVariableFlag% (Handle%)
EtInitManager% | MaxOpenFiles%)
EtInitManagerDefault% ()
EtInsert (Handle%, Buffer&, LockFlag%, Status¥)
EtLOF& (Handle$)
EtMakeRécordCurrent (Handle%, Address&, Statust)
EtMoveFirst (Handle%, Status$)
EtMoveLast (Handle%, Status%)
EtMoveNext (Handle%, Status%)
EtMovePrevious | Handle%, Status$%)
EtOpen { FileName$, Handle%, Status$%)
EtRetrieve (Handle%, Buffer&, LockFlag%, Status$)
EtRetrieve2 (Handle%, Address&, Buffers,
LockFlags, Statuss)
EtRetrieveVariable (Handle%, Buffer$, LockFlads,
Status%) -
EtRetriéveVariable2 (Handle%, Address&, Buffer&,
BufferLen&, LockFlag%, Status$)
EtSeekEQ (Handle%, KeyBuffers, Status$)
EtSeekGE (Handle%, KeyBuffer&, Statusk)
EtSeekGT (Handle%, KeyBuffer&, Status%)
EtSeekLE (Handle%, KeyBuffer&, Status%)
EtSeekLT (Handle%, KeyBuffer&, Status%)
EtSetIndex (Handle%, IndexName$, Status%)
EtTextComp%{ A$, B$)
EtSetLockTimeout (T&)
EtUnlockAllRecords (Handle%)

141

EliTech Development, Inc.

Declare
Declare
Declare
Declare

Declare

Sub
Sub
Sub
Sub

Sub

EtUnlockCurrentRecord (Handle%)

EtUpdate (Handle%, Buffer&, LockFlag%, Status%)

BEtUpdate2 (Handle%, Addressk, Buffers,
LockFlag%, Statusy%)

EtUpdateVariable (Handle%, Buffer$, LockFlagk,
Status%)

EtUpdateVariable? (Handle%, Address&, Buffers,
BufferLen&, LockFlag%, Status%)

142

* Error Codes

Appendix C
Error Codes

All routines that return a status code, either as an argument to the routine or as
the value of a function, will return a zero to indicate that the routine completed
successfully or a non-zero value to indicate and error code. All errors greater
than zero correspond o DOS errors. DOS non-critical errors are returned as
the error value from DOS plus 100. DOS critical errors are returned as the
value DOS returns. E-Tree Library errors are returned as negative values. In
addition some functions have specific negative return values that relate only to
the specific function. Functions that do not return the complete error code
(some that return other values) will return a 'failed’ status and set an error code
that can be read using the EtErrCode() function.

E-Tree Library Errors

Named constants are in the file ETREE.BI.

000 Success

-001 UnKnownFileError
-002 BufferTooSmall

-003 InvalidPageSize

-004 InvalidDatabaseName
-005 OverWritgAttempt
-006 InvalidCRC

-007 InvalidField

-008 LockFailed

-009 IncorrectVersion
-010 TooManyOpen

-011 InvalidPageType
-012 LockedBySemaphore
-013 Notlnitialized

-014 InvalidHandle

-015 MemoryAllocFailed
-016 InvalidPage

-017 FreePageFailed

-018 LinkFailed

-019 CorruptLinkage

-020 MemoryReleaseFailed
-021 InvalidFieldLength
-022 TooManyKeys

143

EliTech Development, Inc.

-023 InvalidindexName
-024 DuplicateindexName
-025 InvalidOffset

-026 InvalidSegment

-027 LockTimedOut

-028 EmptyList

-029 DiskFull

-030 TooManyLocks

-031 LockNotFound

-032 DataRecordCorrupt
-033 DuplicateKey

-034 InvalidAddress

-035 NoModifyKeyFault
-036 IndexNeedsRepair
-037 RecordConlflict

-038 SeckFailed

-254 InvalidOperation
-255 FeatureNotImplemented

Dos Critical Errors

001 Unknown unit for driver

002 Drive not ready

003 Unknown command given to driver
004 Data error (bad CRC)

005 Bad device driver request structure length
006 Seck error

007 Unknown media type

008 Sector not found

009 Printer out of paper

010 Write fault

011 Read fault

012 General failure

013 Sharing violation (DOS 3+)

014 Lock violation (DOS 3+)

015 Invalid disk change

016 FCB Unavailable (DOS 3+)

017 Sharing buffer overllow (DOS 3+)
018 Code page mismatch (DOS 4+)
019 Out of input (DOS 4+)

020 Insufficient disk space (DOS 4+)
255 Write-protect error (actually DOS critical error 0)

144

Error Codes

Dos Non-Critical Errors

These error codes ¢an be returned from DOS as a result of a "non-critical”
error. Note that the High-Level and User-Level E-Tree routines insulate you
from these errors as much as possible. The only time you should encounter
them is if you use any of the Library Support routines directly.

Note that we've added 100 to the actual DOS non-critical error codes to make
it easy to distinguish them from DOS "critical errors."

101 Function number invalid

102 File not found

103 Path not found

104 Too many open files (no handles available)
105 Access denied

106 Invalid handle

107 Memory control block destroyed

108 Insufficient memory

109 Memory block address invalid

110 Environment invalid (usually >32K in length)
111 Format invalid

112 Access code invalid

113 Data invalid

114 Reserved

115 Invalid drive

116 Auempted to remove current directory
117 Not same device

118 No more files--DOS 3+---

119 Disk write-protected

120 Unknown unit

121 Drive not ready

122 Unknown command

123 Data error (CRC)

124 Bad request structure length

125 Seek error

126 Unknown-media type (non-DOS disk)
127 Sector not found

128 Printer out of paper

129 Write fault

130 Read fault

131 General failure

132 Sharing violation

133 Lock violation

134 disk change invalid

145

EliTech Development, inc.

135 FCB unavailable

136 Sharing buffer overflow

137 (DOS 4+) Code page mismatch

138 (DOS 4+) Cannot complete file operation (out of input)
139 (DOS 4+) Insufficient disk space
140-149 Reserved

150 Network request not supported

151 Remote computer not listening

152 Duplicate name on network

153 Network name not found

154 Network busy

155 Network device no longer exists

156 Network BIOS command limit exceeded
157 Network adapler hardware error

158 Incorrect response from network

159 Unexpected network error

160 Incompatible remote adapter

161 Print queue full

162 Queue not full

163 Not enough space to print file

164 Network name was deleted

165 Network: Access denied

166 Network device type incorrect

167 Network name not found

168 Network name limit exceeded

169 Network BIOS session limit exceeded
170 Temporarily paused

171 Network request not accepted

172 Network print/disk redirection paused
173 (LANTtastic) Invalid network version

174 (LANTtastic) Account expired

175 (LANt1astic) Password expired

176 (LANtastic) Login attempt invalid at this time
177 (LANtastic v3+) Disk limit exceeded on network node
178 (LANtastic v3+) Not logged in to network node
179 Reserved

180 File exists

181 Reserved

182 Cannot make directory

183 Fail on INT 24h

184 (DOS 3.3+) Too many redirections

185 (DOS 3.3+) Duplicate redirection

186 (DOS 3.3+) Invalid password

187 (DOS 3.3+) Invalid parameter

146

Error Codes

188 (DOS 3.3+) Network write fault
189 (DOS 4+) Functioh not supported on network
190 (DOS 4+) Required system comporient not installed

147

Using E-Tree Plus With QuickBASIC/PDS

Appendix D

Using E-Tree Plus With QuickBASIC / PDS

D (A) Files Distributed with E-Tree Plus

Once you install E-Tree Plus onto your hard drive, the following files and
subdirectories will be present:

ASM\

OBIJT\

OBJA

SUB\

README.DOC

*BAS

*MAK

ETREE.BI

*BI

The subdirectory where the assembly source code and
.OBJ files can be found.

When the BASIC source code files are compiled, this is
where the .OBJ files will be placed. If you are using
PDS, "far string" .OBJ files will be placed here.

If you are using PDS, "near siring" object files will be
placed here. If using QuickBASIC 4.x or BASIC 6.x, this
subdirectory will not be created.

The subdirectory containing the E-Tree BASIC source
code modules. In this directory there are various *.SUB
modules. Each is stored in ASCII format and has a
header describing its contents,

If present, it contains important information such as
documentation errata or other things we forgot to put in
the manual.

BASIC example programs.

"Make" files used in conjunction with QB and PDS.
A file that contains the E-Tree COMMON SHARED
block, User-Level and High-Level procedure
declarations. It must be $Included at the top of every

program module that invokes an E-Tree procedure.

Other include files used internally by the E-Tree
procedures.

149

EllTech Development, Inc.

BLDLIB.BAT

LIB.DAT

LIBN.DAT

BLDQLB.BAT

QLB.DAT

QLBASM.DAT

BLDRTM.BAT

EXPORT.DAT
COMP.BAT
EUTIL.EXE

EUTIL.DOC

Balch file that constructs the LINK librarics that are used
with E-Tree Plus.

A LIB.EXE response file used when building E-Tree's
default .LIB file.

A LIB.EXE response file uscd when building a .LIB for
PDS "near string” programs.

Batch file that builds a QuickLibrary for E-Tree Plus.

A LINK response file used when building the E-Tree
QuickLibrary.

A LINK response file used when building a
QuickLibrary containing only E-Trec's assembly
langudge routines.

Batch file that constructs an "extended runtime library”
("RTM") for use with BASIC 6.x and PDS. See Section
(G) of this Appendix for more information.

Export file used in conjunction with BLDRTM.BAT.
Batch file used to compile the E-Tree BASIC modules.

E-Tre¢'s database maintenance utility.

An ASCII text file containing documentation for
EUTIL.EXE.

D (B) Procedure Declarations

Most of the E-Tree procedures receive their arguments "by reference”, "by
value” or by a "segmented address.” We have defined the correct parameter-
passing conventions for E-Ttee routines using BASIC's "DECLARE"
statement. The declarations for the E-Tree procedures can be found in a file
called "ETREE.BL." As long as you $Include this file at the top of each
program source file that invokes an E-Tree procedure, you will not have to
give parameltcr-passing conventions another thought.

Kecp in mind that including these declarations in your BASIC source files will
not affect the size of your final .EXE program. However, the declarations will
force BASIC to check the number and type of parameters passed 10 a

150

Using E-Tree Plus With QuickBASIC/PDS

procedure and will also insure that the correct parameter-passing conventions
are used. This benefit alone can save you hours of debugging.

D (C) Using PDS's "Far String" Option

If you installed E-Tree Plus for the Microsoft PDS compiler, two LINK
libraries were generated for you when BLDLIB.BAT was executed:

» ETREE.LIB - Contains the "far string" versions of the routines
® ETREEN.LIB - Contains the "near string” versions of the routines

LINK to ETREE.LIB when compiling with PDS's "/FS" switch and LINK to
ETREEN.LIB when compiling without "/FS." Although the far string option
does make more variable-length string space available, your programs'
performance will suffer due to the complex nature of BASIC's far string
management code.

If you installed for QuickBASIC 4.x or BASIC 6.x, only one LINK library was
created: ETREE.LIB.

D (D) Building QuickLibraries

When you installed E-Tree Plus, a default QuickLibrary was created for you
automatically. If for some reason you wish to build a new one, the batch file
BLDQLB.BAT can be used for this purpose. From the default E-Tree
directory, type "BLDQLB" to generate new ETREE.QLB and .LIB files.

D (E) Building LINK Libraries

After installing E-Tree Plus, you should have executed BLDLIB.BAT. This
batch file creates the required .QLB and .LIB files for your compiler. Once
executed, a default LINK library was created for you (the PDS version has two:
a near string and a far string version). If you modify any of the.E-Tree source
files (which normally shouldn't be necessary), you will need to rebuild the
default E-Tree LINK library(s). We have provided a batch file called
BLDLIB.BAT which performs this task. Run this batch file from the default
E-Tree directory if you wish to rebuild the default library(s).

151

EllTech Development, Inc.

D (F) Combining Libraries from other Products

When you installed E-Tree Plus, we automatically cteated a QuickLibrary

called ETREE.QLB which contains all of the various E-Tree routines. At some
point, you may wish to create a QuickLibrary containing code from E-Tre¢ as o
well as code from another add-on product. The procéss is relatively simple:

® The file BLDQLB.BAT is used to build the default E-Tree
QuickLibrary. It essentially contains the following LINK
command:

LINK /Q @QLB.DAT, ETREE.QLB, NUL, BQLB45 ;
Where:

* QLB.DAT is the response file which contains the paths and
names of all of the modules that will be included in the

QuickLibrary,

» ETREE.QLB is the name of the QuickLibrary the LINK
program will generate,

* NUL directs LINK pot to generate a map file, and

* BQLBA4S is the name of the QuickLibrary support file. The
actual library name that appears ih that position may differ
depending on your version of QuickBASIC / PDS.

® Load QLB.DAT into an ASCII text editor. Do not use the QB(x)
environment because it has a tendency 1o add unwanted trailing
blank lines. '

® Add your additional module or library names to the response file,

keeping the same format as you see there already. Each line in the

file should end with a "+" except for the last line. Be sure there

are no extraneous blank lines after the last line cortaining module

names. Once you've made the desired modifications, save the file

to disk.

Y

® Run the BLDQLB.BAT file. The resulling new ETREE.QLB will

now contain all of the modules listed in the response file,

152

Using E-Tree Plus With QuickBASIC/PDS

D (G) Building Extended Runtime Libraries

Extended runtime libraries ("RTMs") are available in Microsoft BASIC 6.x and
PDS 7.x. They allow you to combine custom program code (written in BASIC
or other languages) with Microsoft runtime code into one "extended” runtime
library. This library is automatically loaded high in memory when your
"BRUN" BASIC program (compiled without /O) is executed. It also allows
programs that CHAIN to sharcd common program code as well as common
data. This means that the E-Tree routines can be placed in an RTM and a group
of programs can share all program code in the RTM. Because the routines in
the RTM do not have to be specifically LINKed to -each- program, the overall
distribution size of your programs much smaller and the programs load faster
into memory.

When you installed E-Tree Plus, all of the files required to build an extended
runtime library ("RTM") containing the E-Tree routines were placed in the
default E-Tree directory. We didn't automatically build an RTM for you for
several reasons. However, if you wish to build one now, please follow the
guidelines set forth below:

® When you installed BASIC 6.x or PDS, be sure that you specified
that the "component libraries” should be retained after
installation. If all of the requited BASIC support libraries are not
present on your hard disk and in a directory indicated by your LIB
environment variable, several error messages will be generated by
the BUILDRTM.EXE program when it is invoked.

® Make sure that the program BUILDRTM.EXE is in the current
directory or in a directory included in your DOS PATH.

B From the default E-Tree directory, type the following:
BLDRTM RtmName [swilches]
Where: RtmName is the namé of the output RTM .EXE and .LIB
files; switches are either/both of "/Fpa" or "/FS." If any of these

switches were used when compiling your main program(s), they
must also be used when building the RTM.

153

EllTech Development, Inc.

Three files are actually generated when building a RTM:

IMPORT.OBJ, which must be LINKed to the front of each
program that will access the RTM,

RitmName.EXE, which is the actual RTM and must be distributed
with your programs, and

RtmName.LIB which must be LINKed to each program that will
access the RTM.

Lel's take an example. Say we have two programs, "PROG1.BAS" and
"PROG2.BAS." We want both to have access to a RTM that includes the
E-Tree Plus routines. There are three steps involved:

Compile the programs. Remember that you canno} use the "/O"
compiler switch (stand-alone) on programs that will access a
RTM. Also remember that if you use the "/FPA" (alternate math
library) or the "/FS" (PDS "far strings") swilches, you must also
use them when building the RTM. To compile our example
programs, do the following:

BC PROG1 /FPA ;
BC PROG2 /FPA ;

Next, generate the RTM. Since we used the "/FPA" swilch above,
we must also use it when building the RTM. We'll create the
RTM "CUSTOM.EXE" with the command:

BLDRTM CUSTOM /FPA

Assuming no errors occurred, the files CUSTOM EXE,
IMPORT.OBJ and CUSTOM.LIB were generdted.

And finally, LINK our programs. When LINKing programs that
will access a RTM, you must use the "/NOD" LINK switch. The
"fEX" switch listed below is optional, but will make your .EXE

files smaller.

LINK /EX /NOD IMPORT + PROG!, PROGI1, NUL, CUSTOM;
LINK /EX /NOD IMPORT + PROG2, PROG2, NUL, CUSTOM;

Important note: If you make any changes to the RTM, you must
reLINK each of your programs with the new IMPORT.OBJ and

154

Using E-Tree Plus With QuickBASIC/PDS

CUSTOM.LIB file that will be generated. Failure to do so will
cause the runtime error "Incompatible runtime library” to be
generated when you attempl o execute your programs,

D (H) Compiling and LINKing

When "Making an EXE" from within the QB or QBX environment, the
resulting .EXE file is usually larger than necessary because unneeded compiler
swilches are often used by QB. For this reason, we recommend that you
compile and LINK your program manually, from the DOS prompt. This gives
you absolute control over what goes into your .EXE file (at least all of the
control that Microsoft gives you). It only involves two steps:

Compile your program's source code files. This is accomplished
by using the BC.EXE program. For example:

BC PROGRAM [switches] ;

"Switches" might include "/O" to make your program a
stand-alone, "/FS" to take advantage of PDS's "far string" option,
etc. Consult your compiler documentation for a complete list of
available options. For example:

BC PROGRAM /O ;

This would compile PROGRAM.BAS using the "stand-alone”
option, generating PROGRAM.OBI.

The next step is to LINK the PROGRAM.OBJ file with all of the
other code required to make it an executable program. Such
"support code” is usually found in libraries, such as BCOMxx.LIB
(QuickBASIC), BCL71ENR.LIB (PDS), etc. For example:

LINK [switches] PROGRAM, , NUL, [libraries] ;

"Swilches" usually include "/EX" which compresses your .EXE
file by five to forty percent. PROGRAM is the name of the .OBJ
file generated by the compiler in the first step. The two commas
that follow the program name direct LINK to give the resulting
.EXE file the same primary name as the first .OBJ listed. In this
case, the .EXE file will be called PROGRAM.EXE. The "NUL"
directs the LINK program not to generate a "map" file (they're of
little use 10 BASIC programmers). Finally, you can list one or

155

EllTech Development, Inc.

more entries in the "librarles” field. By default, the LINK
program automatically scarches the compiler support libraries, so
there's no need to list them. If you also wish LINK to look in
other libraries as well, such as E-Tree's library, you can list it
here. For example:

LINK /EX PROGRAM, , NUL, ETREE ;

This would LINK PROGRAM.OBJ into an .EXE file. All routines
required by PROGRAM that are present in the BASIC support
library and the E-Tree library would be brought into the .EXE file
automalically. Again, only code requited by PROGRAM will be
extracted from the library(s) and made part of the final .EXE file.
Assuming there were no LINKer errors, PROGRAM.EXE would
be generated and ready to execute at the completion of this step.

D (I) Using E-Tree in Programs that CHAIN and SHELL

If you are using QuickBASIC 4.x and will be writing programs that CHAIN
(those compiled without the "/O" switch), be absolutely sure to close all E-Tree
files prior to the CHAIN statement. Thé reason for this is simple. QB4
programs require that "external” routinés be LINKed directly to the main
program modules. When a program CHAINS to another, all of the code and
data that was in use by the CHAINing program is dumped in order to make
room for the CHAINed-to program, including E-Tree's internal variables and
pointers. This is not a good thing! However, the E-Tree Plus code is smart
enough to detect this situation and automatically perform the necessary
clean-up for you. However, you can't CHAIN into the second program and
expect E-Tree files 1o still be open. If this is a problem for you, consider
upgrading to Microsoft's BASIC 6.x or PDS 7.x compiler for which we have a
solution.

AR

If you are using the Microsoft BASIC Compiler 6.x or PDS, you can put the

E-Tree routines in an extended runtime library ("RTM"). The RTM will rethain

in memory, even across CHAINs. However (there's always a "goicha"), be

sure to close all E-Tree files if you decide to SHELL. This is because BASIC
unloads the RTM from memory just before a SHELL in order to make more -
memory available for the operating system. For mote information on building

and using RTMs, see Section (G), "Building Extended Runtime Libraries” in

this appendix.

156

Using E-Tree Plus With QuickBASIC/PDS

D (J) Running the Example Programs

All E-Tree example programs are stored in the default E-Tree directory on
your hard disk and have an extension of .BAS. To load and run one into the
QB 4.5 environment, make the E-Tree directory your current directory and
type the following at the DOS prompt:

QB Example /L ETREE

To load an example program into the QBX environment (PDS users), type the
following at the DOS prompt:

QBX Example /L ETREE /ES

Important note: The "/ES" switch used above directs QBX to preserve the
EMS memory state prior to invoking any external routines - a necessity when
using E-Tree in QBX. Failure to do so on a system equipped with EMS will
most certainly result in a system lock-up shortly after the first E-Tree routine is
invoked.

Once in the environment, you can examine the source code, step-trace through
itin order to see what's going on, or just run the program at full speed. If you
wish 1o compile an example program, type the following at the DOS prompt:

QB4.x and BASIC 6.x users:

BC Program /0 ;
LINK /EX Program, , NUL, ETREE ;

PDS users:

BC Program /O;
LINK /EX Program, , Nul, ETREEN ;

D (K) Example Program Listing

The following source code file can be found on disk in EXAMPLE.BAS. It is
provided here to provide you with an easy reference to a working example of
how to create and traverse an E-Tree Database file. Other example programs
can be found in your default E-Tree subdirectory.
‘This i3 a sample source code file that demonstrates how the E-Tree Plus
‘“user-level"” routines are used in QuickBASIC and PDS programs.

'If running this program in the QBX environment, be sure to use the /ES
'switch when invoking QBX if you have EMS memory.

DEFINT A-2

157

EliTech Development, Inc.

‘These procedures are used only by this example program. They are not
*actually part of the BE-Tree package.

DECLARE SUB PrintHeader (A$)
DECLARE SUB PrintRecord (C AS ANY)
DECLARE SUB PressAKey () 'We use this function only in this pgn

'The following $Include file contains declarations for all of E-Tree's
'"uger-level” procedures. These are the procedures that you will most
*1ikely be using in your programs. If you require lower-level access to
'E-Tree's database structure, aver 40 additional low-level routines
'are also available.

REM SINCLUDE: ‘ETREE.BI' 'Contalns all user-level procedure
'declarations.

TYPE MyRecType 'This is a sample record definition
CustNumber AS LONG

FirstName AS STRING * 20
LastName AS STRING ¢ 20
Addr AS STRING * 30
City AS STRING * 20
State AS STRING * 2
tipCode AS STRING * 10
AreaCode AS STRING * 3
PhoneNum AS STRING * @
AmountDue AS DOUBLE
Age AS INTEGER
END TYPE
DIM C AS MyRecType ‘Define a variable with our structure
CLS
FileName$ - “TEST.ETR"
IF EtFileExist (FileName$) THEN ‘If file exists, open it
EtOpen FileName$, Handle¥, Statusd
IF StatusV THEN '1f it's not a valid ETree file
PRINT “Error™: Status%; " opening "; FileName$
END
END IF
ELSE *If the file doesn't exist, create it
Pagesizeé - 4096 *Automatically calculate optimum page size
PreAllocations - 0 'Don't preallocate any extra disk space
READ NumberOfFieldst ‘our record info is in data statements below

‘Read the field descriptions from DATA statements into the RecordInfo()
‘array.

REDIM RecordInfo(l TO NumberOfFields%) AS EtRecordinfoType
FOR Ele% = 1 TO NumberOfFieldst
READ RecordInfo(Eled).FldName, RecordInfo(Ele%).FldType
READ RecordInfo(Eled).FldLength
NEXT

Maxkeys% = § *Max number o!-keys in the database at once

‘Create the database file, The RecordInfo{) array contains the
‘field descriptions {(read from DATA statements).

EtCreate FileName$, Pagesized, PreAllocationt, RecordInfo(}, Maxkeys\V, Handle%, _

Status®
IF Status% THEN 'In case of a DOS error
PRINT "Error™: Status%; " creating the database ": FileName$
END ?ﬁn
ERASE RecordInfo 'Ne don't need this array anymore

'Read the descriptions of the indexes from data statements and create
‘each index one at a time,

READ IndexesV *Total number of indexes
FOR IndexNum% = 1 TO Indexes®
READ IndexName$, Uniqued, NumberOfColumnst
REDIM Columns$(1 TO NumberOfColumns¥)
FOR ColumnNum% =~ 1 TO NumberofColumns%
READ Columns${ColumnNum$)
NEXT

‘Columns$ () array contains a list of field names (one per element)
*that will make up this index. A "combined index" is an index which
'is comprised of more than one field (as defined by PDS ISAM).

EtCreateIndex Handled, IndexName$, Uniquet, Columns$(), Statush

158

Using E-Tree Plus With QuickBASIC/PDS

IF Status% THEN
PRINT "Error": Status%; " creating index "} IndexName$; " in "; FileName$
EtClose Handleb

END
END IF
NEXT 'Repeat for each index
ERASE Columns$ 'We're finished with this

END IF

' We've created (or opened) the database and established our indexes, now
* let's insert some records.

RESTORE Records
READ NumberOfRecsh
LockFlagy = 1 'Lock before, unlock after
DO
ThisRect = ThisRect + 1

‘Read data into our TYPEd variable "C™

READ C.FirstName, C.LastName, C.Addr, C.City, C.State, C.ZzipCode
READ C.AreaCode, C.PhoneNum, C.AmountDue, C,Age

'Insert the new record into the database.

C.CustNumber - 0 ' AutoIncrement takes care of this one
EtInsert Handlet, VARPTR(C), LockFlag%, Statusi

IF Statust% THEN
PRINT "Error”; Statust¥; " inserting record"; ThisRech
EtClose Handle%
KILL "test.etr"
END
END IF

LOOP UNTIL ThisRecVd = NumberOfRecss®

PrintHeader "By ‘'Null' Index" 'Display info on the screen
EtMoveFirst Handled%, Statuss 'Point at first record
DO UNTIL EtEOF (Handle¥%) 'Loop unti! we reach EOF

EtRetrieve Handle%, VARPTR(C), LockTyped, Status$ 'Retrieve it
IF status% THEN
PRINT "Error"; Statushs; "retrieving on null index!"

EXIT DO
END IF
PrintRecord C 'Display it
EtMoveNext Handle%, Status® 'Point to the next recard
LOOP
PressAKey

' Now, by the "Amount Due” index

PrintHeader "By 'AmountDue' Index" 'Display info
EtSetIndex Handle%, "AmduntDue", Status 'Set new index and first record
IF Status% THEN
PRINT Status®; "error on SetIndex AmountDue"™
EtClose Handled
END
END IF

'Here's the same loop as above. Retrieve a record, display it, and move
'to the next one. Loop until the EOF (end of file) is reached.

DO UNTIL EtEOF (Handle%)
EtRetrieve Handle%, VARPTR(C), LockTyped, Status%
IF Statust% THEN
PRINT "Error™; Statusd; "retrieving on Amount Due index!"™
EXIT DO
END IF
PrintRecord C
EtMoveNext Handle%, Statust
L0o0oP

159

EliTech Development, Inc.

PressAKey

' Now, by the "FullName" index

PrintHeader "By 'FullName' Index”
EtSetIndex Handle%, “"FullName", Status
IF Status% THEN STOP

DO UNTIL EtEOF (Handle$%)
EtRetrieve Handle%, VARPTR{C), LockTypet, Statust
IF Statusy THEN
PRINT "Error"”; Status%; "retrieving on FullName index!"
EXIT DO
END IF
PrintRecord C
EtMoveNext Handle%, Statush
LOOP

PressAKey

PrintBeader "By 'CustNumber’ Ihdex
EtSetIndex Handle¥, "CustNumber"”, Status
IF Status% THEN STOP

DO UNTIL EtEOF (Handle$%)
EtRetrieve Handle%, VARPTR(C), LockType%, Statust
IF status% THEN
PRINT "Error"”: Status%: "retrieving on CustNumber index!™
EXIT DO
END IF
PrintRecord C
EtMoveNext Handle%, Statush
LOOP

EtClose Handle® ‘That's all folks!
END

In all of the functions listed below, Handlet is the file handle

returned by the EtOpen or EtCreate routine when the database was

opened or created. Routines that have Statust in the parameter 1list

use it to return an error code {d non-zero value) instead of generating a
BASIC runtime error. A Statusd cdde of zero indicates a successful
operation.

'EtDelete Handle®, StatusV - Deletes the current record in the database
* referenced by Handle\.

‘EtDeleteIndex - Deletes the specified index.

'EtUpdatevariable - Inserts or updates the variable-length portion of
' a record.

‘EtMoveFirst, EtMovelast, EtMoveNekt, EtMovePrevious - Pasitions the
' current record pointer.

‘EtSeekEQ, EtSeekGE, EtSeekGT, EtSmekLE, EtSeeXLT - Seax*hes for a kay
* wvalue in the current index.

'EtUpdate - Updates the fixed-length portion of the current record.

' In addition to these "user-level" routines, there are also over 70

' other lower-level routines that can be used to manipulate a database

* in just about any desired fashion. Full source code is provided

' along with completn documentation for the datababe structure.

0 e e e e e

* Definition for the file structure
.

DATA 11: ‘Number of fields

'FleldName, Type, Length

DATA CustNumber, 3, 0: 'Auto-incrementing key (long int)
DATA FirstName, 15, 20: '20 byte string field
DATA LastWName, 15, 20: 120 byte string fileld
DATA Addr, 1S5, 30: '30 byte string field
DATA City, 15, 20: '20 byte string field

160

“Using E-Tree Plus With QuickBASIC/PDS

DATA state, 15, 2: '2 byte string field

DATA 2ipCode, 14, 10: '10 byte string (case sersitive)
DATA AreaCode, 14, 3: '3 byté string (case sensitive)
DATA PhoneNum, 14, 8: '8 byte string (case sensitive)
DATA AmountDue, 7, 0: ‘Double precision

DATA Age, 4, 0: ‘Integexr

DATA 4: 'Number of indexes
*Index name, Uniquet, NumberOfColumns%, ColumnName ([, ColumnName...]

DATA CustNumber, 1, 1, CustNumber

DATA FullName, 0, 2, LastName, FirstName
DATA ZipCode, 0, 1, 2ipCode

DATA AmountpDue, 0, 1, AmountDue

Records:

DATA 5

DATA Tony, Elliott, 4374 Shallowford Industrial Pkwy, Marietta, GA, 20066, 404,
928-8960, 10000, 28

DATA Butch, Howard, 4374 Shallowford Industrial Pkwy, Marietta, GA, 20066, 404,
928-8960, 1234.56, 32 -

DATA Bill, Gates, One Microsoft Way, Redmond, WA, 98052-6399, 206, 8€2-8(80, 40, 0

DATA John, Smith, 1234 Main Street, Anytown, US, 12345-6789, 800, 55%-1212,
-1520, 234

DATA Jean-Luc, Picard, c/o Star Fleet Command, San Francisco, CA, 98250, 203,
555-1212, 0, -425 -

SUB PressAKey STATIC
PRINT
PRINT "Press any key to continue ... "
A$ = INPUTS(1)

END SUB

SUB PrintHeader (AS$) STATIC

CLS

PRINT AS

PRINT STRINGS$ (79, "=")

PRINT " 4+ First Last 2ip Amount Due"
)

PRINT STRING$(79, "
END SUB
SUB PrintRecord (C AS MyRecType) STATIC

PRINT USING "#¢#¢#": C.CustRNumber;

PRINT TAB(7): LEFTS (RTRIMS$(C.FirstName), 15);:

PRINT TAB(22): LEFT$(RTRIMS(C.LastName}, 15):

PRINT TAB(37); USING "\ \"; C.zipCode;

PRINT TAB{43): USING "#4,4844.44"; C.AmountDue .

END SUB

161

Converting PDS ISAM Code to E-Tree

Appendix E
Converting PDS ISAM Code to E-Tree

If you are experienced with PDS ISAM or have a program that you wish to
convert o E-Tree Plus, the following guidelines can be used to ease your

transition.

ISAM files can contain more than one table per file. E-Tree
databases can contain only one table per file. The program
EUTIL.EXE included with E-Tree Plus can be used to convert
existing ISAM files to E-Tree format (see Section 5). This
conversion includes moving each table in an ISAM file into a
separate E-Tree file, as well as creating matching indexes.

E-Tree Plus cannot directly support embedded TYPEs (a TYPE
structure within a TYPE structure) or TYPEs that contain arrays
(available in PDS). This does not mean that you cannot use them;
it simply means that you must use an alternate method of
describing them during database creation. All that is required is to
replace these as "unsigned binary" fields of the same length as the
original data type. For example:

TYPE Embedded

FirstName AS STRING * 20
LastName AS STRING * 20

END TYPE
TYPE MyRec
Name AS Embedded 'An embedded TYPE
Array (100) AS INTEGER 'An array within a TYPE
END TYPE

When defining this record structure with the EtCreate routine,
simply define these fields as EtUnSigned ("EtUnSigned" is the
name of the CONSTant to define the numeric value which
actually represents the field type internally) fields of equivalent
lengths. In the above example, the "Name" field in MyRec would
translate as an EtUnSigned field 40 bytes long (20 + 20), and the
"Array" ficld would translate as an EtUnSigned field 202 bytes
long (Dimensions * Elements * BytesPerElement, or 1 * 101 * 2),
When determining the length of an array, don't forget that the
lower bound starts at element 0 unless you specifically tell the
compiler otherwise. Also remember that each array element

163

Converting PDS ISAM Code to E-Tree

requires the following amount of memory:

Integer arrays - 2 bytes,

Long integer arrays - 4 bytes,

Double-precision and Currency arrays - 8 bytes, and
TYPEd arrays - the combined length of all its fields.

® Remember, you can still use the same TYPEd variable as you
used in your PDS ISAM database; embedded TYPEs and arrays
must simply be described as EtUnSigned fields. Also keep in
mind that if you are using EUTIL to convert your existing ISAM
databases, these concemns are handled for you automatically.

8 Transaction processing is not currently supported by E-Tree Plus.
This means that we have no alicrnatives for the following ISAM
keywords: BEGINTRANS, SAVEPOINT, ROLLBACK,
ROLLBACK ALL, and COMMITTRANS. In most cases we have
encountered, transaction processing is not crucial for database
updates. However, we do intend to include support for it in a
future release of E-Tree Plus.

A few of the E-Tree equivalent statements are slightly different than those
you've used in PDS ISAM. Generally speaking, a different syntax was required
when:

® The BASIC statement allowed a variable number of parameters,

= The BASIC statement directly interpreted a TYPE structure (such
as in BASIC's OPEN statement), or

® The E-Tree version requires a record-locking decision to be made.

Below, we'll discuss each of the PDS ISAM statements that we support along
with their E-Tree cquivalents. Instead of listing them in alphabetical order,
we'll list them in the most likely order of usage.

OPEN
ISAM:

OPEN FileName$ FOR ISAM TypeName "TableName" AS #BufferNumber

E-Tree:

‘When creating a new database file:
EtCreate FileName$, PageSize&, PreAllocation&, RecordInfo(), _
MaxKeys%, Handle$, Statust

164

Converting PDS ISAM Code to E-Tree

‘When opening an existing database file:
EtOpen FlleName$, Handle%, Status$

There are a couple of fundamental problems in exactly duplicating the BASIC
OPEN syntax. In PDS ISAM, a table’'s structure is defined by a TYPE...END
TYPE statcment. This is used to define the field names, lengths, and types of
data that will comprise an ISAM table. Because TYPE structures are
interpreted at compile-time and translated into addresses and offsets, E-Tree
Plus cannot use them directly to actually define the record structure of a
database file. For this reason we chose to provide two routines to be used to
open a database: EiCreale is used to create a new database file and has the
additional parameters required by this operation; EtOpen is used to open an
existing database file and has a much shorter and less complicated parameter
list.

Below, we'll show you two code fragments. The first demonstrates how to open
and create a database file in PDS ISAM, and the second in E-Tree Plus:

‘Creating and opening a database in PDS ISAM:
.
TYPE MyType
FirstName AS STRING * 20
LastName AS STRING * 20
END TYPE
DIM MyVar AS MyType

FileName$ = “database.mdb"
OPEN FileName$ FOR ISAM MyType “MyTable" A5 #BufferNumber

‘Creating and opening a database in E-Tree:
L}
REM SINCLUDE: 'ETREE.BI®
TYPE MyType .
FirstName AS STRING * 20
LastName AS STRING * 20
END TYPE
DIM MyVar AS MyType

FileName$ = “database.etr"

IF EtFileExist% (FileName$) THEN 'If file exists
EtOpen FileName$, Handle$, Status$ ' open it normally.
ELSE 'Otherwise create it
DIM RecordInfo(l TO 2) AS RecordInfoType 'Needed by EtCreate

RecordInfo (1) .Name = "FlrstName" ‘Field Name
RecordInfo (1) .Type = EtString 'Field Type
RecordInfo(l) .Length = LEN(MyVar.FirstName) 'Fleld Length
RecordInfo (2) .Name = "LastName" ‘Field Name
RecordInfo(2) .Type = EtString ‘Fleld Type
RecordInfo(2) .Length = LEN({MyVar.LastName) ‘Fleld Length
MaxKeys$ = 2 'Max number of indexes

EtCreate FileName$, PageSize&, PreAllocations RecordInfo(), _
MaxKeys%, Handle%, Status$
END IF

165

Converting PDS ISAM Code to E-Tree

In the EtCreate example above, there are a few parameters which may seem
foreign to you:

® The RecordInfo() array is used to define the name, type and
length of each field. This is necessary since it is not possible for
us to interpret a TYPE...END TYPE structure directly.

m PageSize& allows you to manually define the size of each "page"
used 1o store data and internal information about the database file.
If you pass this as zero, we'll calculate an optimum page size for
you.

®m PreAllocation& represents the amount of disk space in bytes that
you wish to preallocate for the file. PDS ISAM normaily
preallocates 64K bytes of disk space for a new file. At first, we
suggest that you pass values of zero for both PageSize& and
PreAllocation& and let the routines do most of the work for you.

® MaxKeys% represents the maximum number of indexes you wish
to have maintained in the database at one time. Remember, you
can add and delete indexes at any time, however, you cannot have
more than MaxKey% indexes in the file at one time.

There are a couple of other differences between BASIC's OPEN and E-Tree's.
that you should keep in mind. When opening a file in BASIC, you assign a
"buffer number" or "handle” 1o the file. In E-Tree Plus, you have a choice of
passing a value in Handle% (between 1 and MaxOpen% [4]), or passing a
value of zero and allowing the EtOpen and EtCreate procedures to retumn a
handle 10_you. The Handle% is then used with every other E-Tree routine when
addressing that specific file. Also, BASIC can generate a runtime error if you
attempt to open a file using an invalid filename or point to a directory that
doesn't exist. Instead of generating a runtime error, E-Tree routines return a
completion code in the Status% parameter. If Status% is returned as zero, the
function was successful, otherwise the value returned represents an error code.
See Appendix B for a complete list of E-Tree Plus error codes.

166

Converting PDS ISAM Code to E-Tree

Close

PDS ISAM:

CLOSE #BufferNumber

E-Tree Plus:

EtClose Handle%

As you can see, there is no functional difference between the two
implementations.

CreateIndex

PDS ISAM:

CREATEINDEX #BufferNurber, IndexName$, Unique$, “ColumnName" _
[, ColumnName (. . .]]|

E-Tree:

'For index types suppcrted by PDS ISAM:
EtCreatelIndex Handle%, IndexName$, Unique%, Columns$ (), Statuss

‘For keys based on partial flelds, descending, and non-modifyable indexes:
EtCreatelndex2 Handle%, IndexName$, Desc{}, Unlique%, Statuss

Besides supporting the all of the key types offered by PDS, E-Tree Plus also
supports truc scgemented (one key comprised of pieces of one or more fields),
descending, and non-modifyable keys. For this reason we chose to provide two
CreateIndex functions: EtCreateIndex has a very similar syntax to PDS ISAM
and provides the same l¢vel of functionality; EtCreateIndex2 has extensions 10
support the added functionality available in E-Tree Plus.

Because add-on proceduras written for BASIC cannot accept a variable number
of parameters, the EtCreateIndex routine uses an array to supply the column
names that will comprise the index, one column name per element. For
example:

PDS ISAM:

CREATEINDEX #BufferNurber, “FullName"“, 0, "“LastName",
“"FirstName" -

167

Converting PDS ISAM Code to E-Tree

E-Tree:
REDIM Columns$(l TO 2)
Columns$ (1) = “LastName"
Columns$ {2) = "FirstName"

EtCreateIndex Handle%, “FullName", 0, Columns$ (), Status$

As you can see, the E-Tree implementation requires a bit more code but isn't
much more complex. Our goal was to maintain similar syntax and
functionality.

Deletelndex

PDS ISAM:

DELETEINDEX #BufferNumber, IndexName$

E-Tree Plus:

EtDeleteIndex Handles, IndexName$, Statush

E(DeleteIndex adds only a Status% parameter. If the operation is unsuccessful
(index doesn't exist or lock error), Status% will return an error code instead of
triggering a runtime-error and terminating your program.

BOF, EOF, LOF

PDS ISAM:

BeginningOfFileFlag% = BOF (BufferNumber%}
EndOfFileFlag% = EOF (BufferNumbert)
RecordsInTable& = LOF (BufferNumber%)

E-Tree Plus:

BeginningOfFileFlag% = EtBOF (Handle%)
EndOfFileFlag% = EtEOF (Handle$d)
RecordsInTable& = EtLOF {Handlebd)

SetIndex

PDS ISAM:
SetIndex ¥BufferNumber, IndexName$
E-Tree Plus:

. EtSetIndex Handle%, IndexName$, Statuss

168

Converting PDS ISAM Code to E-Tree

EtSetIndex adds only a Status% parameter. If the operation is unsuccessful
(index doesn't exist), Status% will return an error code instead of triggering a
runtime-crror and terminating your program.

SeekEQ, SeekGT, SeekGE

PDS ISAM:
SEEKxx #BufferNumber, KeyValue [, KeyValue ..,]

E-Tree Plus:

EtSeekxx Handle%, KeyValueAddress&, Status$

There are a couple of differences worth noting here. As with many other
E-Tree routines, a Status% parameter has been added. In case a DOS file I/O
error occurs (the most likely time an error can occur with this routine), the
DOS error code is returned in this paramcter.

The PDS ISAM version of SEEKxx accepts a variable number of key values as
well as a variable number of key types. This adds a great deal of complexity to
our atiempt at maintaining a similar syntax in E-Tree's EtSeekxx routines.
Since our user-level routines are written in BASIC, we must follow BASIC's
rules that apply to parameter-passing. So, instead of literally passing one or
more KeyValues as you do with PDS ISAM, you must pass EtSeekxx the
memory addrgss where the key value is stored. BASIC has built-in functions
that return this information to you. They are:

= VARPTR is used to return the offset in DGroup (BASIC's "near”
data segment) where simple "scalar” variables, fixed-length
stringg, user-defined "TYPEd" variables, and elements of static
arrays are stored. For example;

Address& = VARPTR (A%) 'Offset of A% (scalar variable)
DIM B AS STRING * 20

Offset¥ = VARPTR (B) 'Offset of fixed-length string
REM $STATIC '‘Create a static array which
DIM Array%{100) ' is stored in DGroup.
Address& = VARPTR (Array%(10)) 'Offset of element 10

= SADD is used in QuickBASIC 4.x and BASIC 6.x to return the
offset of a "near” variable-length string or element of a
variable-length string array. For example:

Address& = SADD(AS) 'Or

169

Converting PDS ISAM Code to E-Tree

Address& = SADD(Array$(25)) 'Address of element 25

= SSEGADD is used in PDS 7.x to return the far address of a
variable-length string or string array. Because PDS supports both
“near” and "far” strings, SSEGADD is the only reliable way to
determine a string's address in either memory-model. For

AR
example:
Address& = SSEGADD (A$) 'Or
Address& = SSEGADD (Array$(8)) '‘Address of element 8

= VARSEG and YARPTR are used together to return the segment
and offset (respectively) of an element of $Dynamic numeric or
fixed-length string arrays. Using the EtFar Address routine, these
values are combined into a far address to the specified array
element. Although it is unlikely that you'll ever use an array
element as a key value, we just wanted to show you how just in
case the need should arise:
REM $DYNAMIC
DIM Array%(100) "REDIM" also makes it $Dynamic

Address& = EtFarAddresss (VARSEG (Array%(5)),
VARPTR (Array%(5)))

As we mentioned previously, you must pass the address of the KeyValue to the
EtSeekxx routines instead of the Key Value itself. The KeyValue you are -~
seeking must be as long as the key actually stored in the file. It can be longer,

but not shorter. Lel's say we have a file indexed on a "LastName" field which

is a 20 byte-long string . If we want to find the first record in the database that

is greater-than or equal to "Smith", we need to build a buffer that is at least 20

bytes long. You can accomplish this any of several ways:

'Create a varlable-length string padded with spaces

KeyValue$§ = SPACES$ (20)
LSET KeyValue$ = "Smith*
EtSeekGE Handle%, SADD {(KeyValue$), Status$%

‘Use a fixed-length string that is as long or longer as needed.
‘All we actually need is 20 bytes, but a longer string could
‘potentially be used with more than one index.

DIM KeyValue AS STRING * 100
KeyValue = "Smith" '*BASIC automatically pads with spaces
EtSeekGE Handle%, VARPTR (KeyValue), Statustd

If you have a "combined index" consisting of more than one column, you must .y
provide the EtSeekxx routines with a KeyValue that looks like a combination

of the various columns comprising the index. For example, say you have an

index called "FullName" that consists of the "LastName" and "FirstName"

columns (each are 20 byte strings). You can set up a TYPEd variable that

170

Converting PDS ISAM Code to E-Tree

represents this combined KeyValue and load each field with the values you are
seeking:

TYPE FullNameStuc
LastName AS STRING * 20
FirstName AS STRING * 20
END TYPE
DIM FullName AS FullNameStruc
‘Open the file and make the “FullName" index active
'Let's search for John Smith:
FullName.LastName = "Smith"

FullName.FirstName = "John"
EtSeekEq Handle%, VARPTR(FullName), Statuss$

You could also build a variable-length string that has the same structure as the
index. Granted this is much more difficult than using a TYPEd variable as
described above, but it does allow a more dynamic approach (variable-length
strings can be constructed at runtime and TYPEd variables must be defined at
compile-time):

FullName$ = LEFTS ("Smith"+SPACES (20),20) + _
LEFTS ("John"+SPACES (20) , 20)
EtSeekEq Handles, SADD(FullName$), Status$

MoveFirst, MoveLast, MoveNext, MovePrevious
PDS ISAM:
MOVExx #BufferNumber

E-Tree Plus:

EtMovexx Handle%, Status$

The syntax remains the same with the exception of the Status% parameler. If a
DOS error occurs during an EtMovexx function, the error code will be returned
in Status% (PDS ISAM would trigger a runtime error).

Retrieve, Update, Insert

All three of these statements use the same syntax. We'll use RETRIEVE and
EtRetrieve in the examples listed below.

PDS ISAM:

'All three have the same syntax. We'll use RETRIEVE

171

Converting PDS ISAM Code to E-Tree

RETRIEVE #BufferNumber, TypedVariable

E-Tree Plus:

EtRetrieve Handle%, VARPTR(TypedVariable), LockType%, Status$

In E-Tree's implementation, you pass the address of the TYPEd variable
instead of the TYPEd variabie itself (see the entry for SEEK for an
explanation). LockType% indicates the type of record lock you wish to place
on the record (see Section 4(D) for more information about record-locking
options). If an error occurs (conflict with a unique key or a DOS error), the
appropriate error code is returned in the Status% parameter. (PDS ISAM would
generate a runtime error).

Delete

PDS ISAM:

DELETE #BufferNumber

E-Tree Plus:

EtDelete Handle%, Status%

Status% will be returned with a non-zero value if a DOS file 1/O error occurs
or if the record you wish to delete is locked by another process.

GetIndex$

PDS ISAM:

IndexName$ = GETINDEXS$ (BufferNumber)

E-Tree Plus:

IndexName$ = EtGetIndex$ (Handle$d)

There is no difference in syntax or functionality.

172

Converting PDS ISAM Code to E-Tree

TextComp

PDS ISAM:

Result® = TEXTCOMP (AS, BS)

E-Tree Plus:

Resulth = EtTextComp (AS, BS)

There is no difference in syntax or functionality.

173

Index

Index

JES, 157

/EX, 154, 155, 156, 157

/NOD, 154

Birieve, 1, 26, 137

CHAIN, 31, 153, 156

Createlndex, 167

Data Dictionary, 11

Delete, 16, 20, 26, 32, 37, 38, 89, 133, 166, 172
Deletelndex, 168

embedded TYPEs, 163, 164
EtBOF%, 29, 110, 141

EiClose, 30, 110, 159, 160, 167
EtCopyMem, 83

E«CRC32&, 84

EiCreate, 20, 22, 24, 33, 48, 72, 108, 141, 158, 160, 163, 164, 165, 166
EiCreatelndex, 19, 35, 57, 108, 141, 158, 167, 168
EtCreateIndex2, 35

E«CV1%, 85

EICVL&, 86

EtDelete, 20, 37, 110, 141, 160, 172
EtDeletelndex, 38, 108, 141, 160, 168
ELEOF, 21, 29, 39, 57

EtErrCode%, 87

EiFarAddress&, 70, 141
EtFarToOffsecté, 69, 141
EtFarToSegment&, 69, 141
EtFileClose, 88

EtFileDelete%, 89

ElFileExist%, 90, 141

EtFileFlush%, 91

EtFileOpen%, 92

EtFileRead%, 93

E(FileSize&, 94

EiFileWrite%, 93

EtFiliMem, 95

EtFreeDiskSpace&, 32, 96
EiGetFilePointer&, 97

EtGetlndex$, 43, 109, 141
EtGetLockTimeout, 17, 69, 81

Etlnit, 98

Eulnsert, 14, 23, 44, 61, 71, 110, 141, 159

175

EllTech Development, Inc.

EtLock%, 108

EtLockNoTimeoutMsg%, 17, 79, 108
EtLockRegion%, 99

EtLockTimeoutMsg%, 17, 80, 108

EWLOF&, 45, 110, 141

EtMemAlloc%, 100

EtMemRelease%, 101

EtMemReleaseAll, 101

EtMemSeg%, 100, 102

EtMemSize&, 103

EtMoveFirst, 21, 29, 47, 110, 141, 159, 160
EtMovelLast, 21, 39, 47, 110, 141, 160
EtMoveNext, 21, 39, 47, 110, 141, 159, 160
EtMovePrevious, 29, 47, 110, 141, 160
EtNetworkType%, 104

EiOpen, 24, 33, 48, 72, 110, 141, 158, 160, 165, 166
EPeekB%, 105

EtPeek1%, 105

EtPeekL&, 105

EtPokeB, 106

EtPokel, 106

EwPokeL, 106

EtReleaseAllLocks, 107

EtRetrieve, 11, 14, 20, 21, 23, 49, 71, 110, 141, 159, 160, 171, 172
EtRetrieve?, 51, 53, 110, 141

E(Retrieve Variable, 23, 53, 111, 141
EtRetrieveVariable2, 23, 55, 111, 141
EtSeekEQ, 21, 57, 110, 141, 160, 171
EtSeekGE, 21, 57, 110, 141, 160, 170
EtSeekGT, 21, 57, 110, 141, 160

EtSeekLE, 21, 57, 110, 141, 160

Ei1SeekLT, 21, 57, 110, 141, 160

EtSetlndex, 20, 21, 58, 110, 141, 159, 160, 168, 169
EtSetLockTimeout, 17, 69, 73, 81, 108, 141
EtSetNetworkType, 104

EtTextComp%, 59

EtUnLock, 108

EtUnLockRegion, 99

EtUpdate, 14, 20, 23, 61, 62, 71, 110, 142, 160
EtUpdateVariable, 23, 66, 111, 142, 160
EtUpdateVariable2, 23, 67, 111, 142
EUTIL.EXE, 26, 150, 163

Extended runtime library, 5, 31, 150, 153, 156
Gellndex$, 172

176

Index

Hard-Lock, 11,114

ISAM, 1, 11, 24, 26, 33, 137, 158, 163, 164, 165, 166, 167, 168, 169, 171, 172,
173

Key Definition, 11, 19, 119, 120, 123, 136

Lock Collisions, 16, 17, 50, 52, 53, 56, 62, 65, 66, 68, 79, 80, 115

PDS ISAM, 1, 11, 26, 137, 158, 163, 164, 165, 166, 167, 168, 169, 171, 172,
173

QBX, 155, 157

QuickBASIC, 3, 8, 149, 151, 152, 155, 156, 157, 169

record locking, 1, 3,9, 12, 79, 80, 137

Record Definition, 11, 12, 33, 120, 121, 158

RTM, §, 31, 150, 153, 154, 156

SEEKEQ, 169

SEEKGE, 169

SEEKGT, 169

segments, 12, 19, 20, 35, 36

Semaphore, 12, 49, 50, 52, 53, 56, 62, 64, 65, 66, 68, 112, 113, 114, 118, 120,
121,122,124

SetIndex, 159, 168

Shared, 13, 149, 153

SHEL Ling, 31

Soft-Lock, 12, 44, 49, 52, 53, 55, 66, 67, 118

EiCreateIndex2, 19, 34, 35, 36, 57, 108, 141, 167

SystemTimeout, 16, 17

TextComp, 173

177

