EllTech

Graphical User Interface Toolkit

Reference Manual

"EGUI"

Gedicaﬁon, \

The creation of the EGUI Toolkit Product was only
possible because of the best family a guy could have.
The hundreds of hours which has gone into developing
this product over a five year period have been hours
that could have been spent with my family. But the
hard work put into this product was done because of
my family. I would like to say Thank You and that

I Love each one of you very much, especially my
beautiful wife Lisa.

Thanks Guys, I couldn't have done it with out you!

k Mike J

Developed for EllTech Development, Inc.

4374 Shallowford Industrial Parkway
Marietta, GA 30066

Technical Support..... (404) 928-8960 9am - Sam M-F

Sales........cccoeevvieiinns (800) 553-1327
BBS......oii (404) 928-7111 (HST)
Fax.......cooovvviinnn. (404) 924-2807
Documentation Revision Date: January 1993

Software and Documentation
Copyright © 1993 EllTech Development, Inc.
Copyright ©1989,1991,1992,1993 Michael L. Bishop
All Rights Reserved.

Contents

Part 1 Getting Started

Document Conventions & Information

Chapter 1 Introduction

Product Description
Compatible Compilers
System Requirements
Product Registration
Technical Support

Chapter 2 Set Up (Installation)

Getting Starting
Making Backup Copies
Installation
Files Distributed with EGUI Toolkit
Procedure Organization
Procedure Declarations (Include Files)
Using PDS & VBDOS "FAR Strings"
Building Quick Libraries
Compiling & Linking

BN

NNODAON = =

I

Part 2 EGUI Form Generator

Chapter 3 Overview

What is an Object?
Design Mode & Run Time Mode
Working with Forms (Dialog Boxes)
Saving a Form
Creating a New Form
Loading a Form
Color System
Environment Color Properties
Single Color Formula
Multi Color Formula
System Color Palette Assignment
Desktop Color & Background
Full Form Mode
Font System
The File Manager

Chapter 4 Drawing the Interface

Drawing Controls
Control Object Tool Box
Drawing a Picture Box
Editing Controls
Resizing Controls
Moving, Deleting, Copying,
Cutting and Pasting Controls
Undo Edit
Setting Control Tab Order
Refreshing the Form
Go to Form Key
Aligning Controls on the Form
Pull Down Menu Design
Icon Editor
Tools Menu

S 2 ONNOOOOO DB ONEAEWWWN =

WWN = =
N o

= ONOO OO AA

III

Chapter 5 Setting Properties

The Role of Properties

Property Prefix
Using the Control Property Bar
Other Ways to Set Properties
System Environment Properties

HLWN— =

Chapter 6 Creating Form Source Code

Source Code Compiler (EGUISGEN.EXE) 1
Building Source Code Modules 3

Chapter 7 Printing

Printing a Form image 1

v

Part3 Application Development

Chapter 8 Structuring the Application

DBFormat Structure
Loading Form Source Code
Initializing the EGUI System
Display Modes and Viewports
Window Types (Modal Dialog Boxes)
Where & How to Use Control Objects

Dialog Box

Check Box

Option Button

Combo Box

Command Button

Edit Box Control

Scroll Bars

List Box

22 OO0 ~NNOADERWNN =

(=N =]

Chapter 9 Attaching Code to Controls

Event Procedures &
Control Return Codes
Key Press Events
Mouse Events
Key Press Event Handler
The Status Property
Maintaining Control Pointers

WWNN

Part4 Controls, Properties & Functions

Chapter 10 Environment Properties

A through
Z Reference

Chapter 11 Control Properties

A through
Z Reference
Unsupported Properties

Chapter 12 Control Functions

gBuildDialogBox%

gChkOptBox% (Check & Option Button)
gComboBox%

gCommandButton%

gEditBox%

gHorzScrollBar% & gVertScrollBar%
glListBox%

gObjManger%

gPullDownMenu%

Chapter 13 Library Functions

g3DBox%
g3DRect%
gBorder%
gCustomMouse%
gDispErrorMess%
gDrawArc%

1
13

168
169

OO wW-=-

17
19
23
25

= O~NOW-

Chapter 13 Continued

gDrawCircle%
gDrawEllipse%
gDrawLine%
gDrawPCXFile%
gDrawRect%
gDrawText3D%
gDrawTextCol%
gDrawTextPix%
gDropDownBox%
gGetCurrentPath%
gGetDirDrvList%
gGetDIbClick%
gGetFileList%
gGetimage%
gGetKeyPress%
gGetMouse%
gGetSysFontHgt%
gHandMouse%
gHideMouse%
gHourGlassMouse%
glnitBWSystem%
glinstallMouse%
gloadlcon%
gl.oadSysCfgFile%
glLoadSysFont%
gMessageDialog%
gMouseCheck%
gMouseFunc%
gPaint%
gPercDonBarA%
gPutimage%
gReStartMouse%
gRemoveDialogBox%
gSetEnvFontNum%
gSetMouseRange%
gSetPDMenu%
gSetVideoMode%
gShowMouse%
gStandardMouse%
gStopMouse%
gTitleBar%

13

17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55

59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91
93

VII

Appendix

Object Oriented Programming Tech.
Custom Controls
Utilities

a) CM.EXE (Compiler Manager)

b) PCX2ICN.EXE

VIII

EGUI Toolkit
Part 1

a—

Getting Started

Document Conventions

Throughout this manual, the term "DOS" refers to both MS-DOS and PC-DOS.

The following document conventions are used throughout this manual:

Convention

Description of Convention

Bold text

O

Italic text

Monospaced type

BEGIN
that a

END

Bold letters indicate a specific term or punctuation
mark intended to be used literally; (i.e. language key
words or function names such as REDIM or
gBuildDialogBox%). You must type these terms
and punctuation marks exactly as shown.

In syntax statements, parentheses enclose one or
more parameters that you pass to a function.

Words in italics indicate a placeholder; you are
expected to provide the actual value. For example,
the following syntax for the gPaint% function
indicates that you must substitute values for the x1%,
v1% and colr& parameters, separated by a comma:

gPaint% 1%, y1%, colr&)

Code examples are displayed in a nonproportional
typeface.

Vertical ellipses in program example indicate
portion of the program is omitted.

Ellipses following an item indicate that more items
having the same form may appear.

Convention

Description of Convention

[]

SMALL CAP LETTERS

Brackets enclose optional fields or parameters in
command lines and syntax statements. In the
following example STATIC is an option in the
function header.

FUNCTION ghitBWSystem% [STATIC]

A vertical bar indicates that you may enter one of the
entries shown on either side of the bar. The
following statement illustrates the use of a vertical

bar:

colr& = defaultflag | colorformula
Quotation marks set off terms defined in the text.
Small capital letters indicate the names of keys and

key sequences, such as:

ALT + SPACEBAR

Introduction

Chapter 1
—_——hnapter 1

Introduction

Product Description

Welcome to the EGUI Toolkit Library and Form Generator! We have put every
effort into making this one of the finest Graphical User Interface Libraries
available to programmers.

EGUI Toolkit is a library of BASIC and Assembly Language routines that are
Linked into your .EXE program files or placed in an extended runtime library.

The EGUI Toolkit was developed to allow the building of DOS based
application with a Graphical User Interface. These applications would be able
to function much like applications which are developed for Microsoft Windows,
but without the overhead involved with MS Windows programs.

The EGUI Form Generator was developed to allow the creation of Dialog Box
Forms which are used within the EGUI Library to build the application's user
interface. The Form Generator works much like that of MS Visual BASIC.
You draw Control Objects on a Dialog Box Form. Then you may customize the
forms and controls to you specific needs by setting their property values. After
a form has been created you may save a form file to be modify later or create the
BASIC Source Code to load into the BASIC IDE System or your favorite Text
Editor.

The EGUI Source Code Compiler (Generator) will read and interpret EGUI
Form Files and produce BASIC Run Time Source Code. These Source Code
Files are either full working modules, or function files which may be merged
into a module. The files are produced in ASCII code so they are compatible
with a wide variety of Text Editors. Once the Source Code Files have been
loaded into your editor then you will attach code to the events which are
produced by the User Interface Library. This code will add the finial
functionality to you applications.

The EGUI Library is based on Object Orient Programming Techniques. It is
not a true Object Orient Library, however it includes, and will allow the
development of, many of the features and capabilities found in an Object Orient
System. This manual does not go deep into the use of Object Orient
Techniques because that is beyond its scope. However it is recommend, but not
required, that if you are not familiar with Object Orient Programming
Techniques that you should acquire a reference manual on this subject. There
are several excellent reference available on Object Orient Programming. If you
can not find a reference we will be glad to may some suggestions.

EllTech Development, Inc.

Compatible Compilers

EllTech Graphics User Interface Toolkit is compatible with Microsoft
QuickBASIC versions 4.00b and 4.50, Microsoft BASIC Compiler 6.x,
Microsoft BASIC Professional Development System 7.x (PDS) and Visual
Basic for MS-DOS version 1.0 (VBDOS). The QuickBASIC, PDS, VBDOS
versions are each sold separately.

System Requirements

+ During Development
EGUI Form Generator & EGUISGEN (Source Code Compiler)

IBM PC or PS/2 or 100% Compatible
286 CPU or better [386 recommended)
VGA Video Adapter
DOS 3.1 or higher
560k Conventional Memory

[1.4 meg of EMS or XMS recommended]
Hard Drive with 2 meg available

[1meg Ramdisk highly recommended]
Microsoft Mouse or 100% Compatible

The EGUI Form Generator will use EMS or XMS memory for some
of its code if avalible. The EGUI System uses a Ramdisk or Harddrive
for graphics screen paging and data storage. For best performance
setup a lmeg Ramdisk (Note: Put the environment variable
RAMDISK=drive:\ in your AUTOEXEC.BAT).

Example: SET RAMDISK=G:\ (where G is your ramdisk drive

id) —_—

Note any other utilities which come with EGUI will work with the
above requirements.

Introduction

¢ During Run Time

IBM PC or PS/2 or 100% Compatible
286 CPU or better [386 recommended]
256k EGA or VGA Video Adapter (SDVM)
DOS 3.1 or higher
180k Conventional Memory

(1 meg of EMS or XMS recommended]
Hard Drive with 1.4 meg available

[1meg Ramdisk highly recommended]
Microsoft Mouse or 100% Compatible

In addition to the above requirements you must add your application
overhead to the Ram and Harddrive requirements. Also not that the
256k video requirements are for the EGUI Standard Video Driver
Module, if an Enhanced Video Driver Module (this is a sperate
purchase item) is used see the requirements for that specific driver.

EllTech Development, Inc.

Product Registration

If EGUI Toolkit was purchased directly from EliTech Development, it has
already been registered to the person who bought it. If it was purchased
through a dealer, your registration information will be forwarded to EllTech
Development by your dealer. Upon receiving this information, you will be
added to our customer database and will be given access to the EGUI Toolkit
Support Conference on our BBS.

Technical Support

EllTech Development provides free, full-time technical support to all registered
users of EGUI Toolkit. Our hours are Monday through Friday, 9:00 am. to
5:00 p.m. Eastern time. You can reach us at (404) 928-8960.

Or if you prefer, call our 24 hour bulletin board system ("BBS"). We run
PCBoard BBS software and a US. Robotics Courier Dual Standard HST modem
(supporting baud rates from 1200 to 38400, including v.32 high-speed
modems). We have a dedicated message base for EGUI Toolkit as well as the
latest version of the product available for download. Many times you can get an
answer to your tech support question by calling our BBS and scanning the
messages. If you've run into a snag, the chances are pretty good that others have
had a similar problem and a solution already awaits you.

As a registered user of EGUI Toolkit, you already have an account established
on the BBS as well as access to the private EGUI Toolkit conference. Log on
using the name that appears on your invoice (no middle initials). Your
password is your Zip or Postal code. Be sure to use the BBS's "W" command to
change your password (for security reasons) during your first session.

Here are some phone numbers you'll need to know:
(404) 928-8960 Technical Support

(404) 928-7111 EllTech Development's BBS
(404) 924-2807 Fax

Set Up (Installation)

- Chapter 2

Set Up (Installation)

Getting Started

+ Making Backup Copies

Before installing EGUI Toolkit for the first time, be sure to make a
backup copy of the distribution diskette(s) for safe keeping. The DOS
"DISKCOPY" command is best suited for this purpose. If you require
any help using DISKCOPY, please refer to your DOS reference
manual.

Installation

To install EGUI Toolkit on your hard disk drive, insert the distribution
diskette into the appropriate floppy disk drive and close the latch. Log
onto that floppy drive by typing the drive letter followed by a colon and
press ENTER. Next, you'll need to run the "INSTALL EXE" program.
This will decompress and copy the appropriate files to the specified
subdirectory on your hard drive. This is the same installation program
that is included as part of this product. It is easy to set up and
customize for your own use.

Once you execute INSTALL.EXE, click the INSTALL button on the
startup screen and you will be asked to provide information such as the
desired drive and directory that you wish to install EGUI Toolkit on,
the compiler(s) that you are using, and the files that you wish to
install. Once all of the required information is provided, click the
INSTALL button and INSTALL will automatically create the required
directories and decompress the required files.

§ fﬁ?t:llgﬁ;u_‘!-\rrquionm_m_;_i“
: Dlx;ctorg: Imu | i
iDriver SR S
R [=]frania: | : =1 to: ‘
[Comllor Type Files to butall
| [QuickBASIC 4.x [f]Form Senorator 4 Compiler
D'm r;s T R [lLinker Libraries R
I s et e
i [Jumwos 1.9 | Dource Coda -
Spnis Haededt - gimced ey
Space Auailable: 725630 Ldoeant] mre |

EliTech Development, Inc.

Files Distributed with EGUI Toolkit

After installing EGUI Toolkit onto your hard drive, the following files and
subdirectories will be present in and under the default EGUI Toolkit directory:

+ \EGU!l Default Directory
EGULEXE The EGUI Form Generator program.

EGUISGEN.EXE The EGUI Source Code Compiler
(Generator). This program is used to build
source code files (*. BAS and * FNC) from
form files (*. FRM).

EGULINI The EGUI System Initialization File. This
file is used with the Form Generator and
must also be included with any applications
you create with the EGUI System Library.

README.DOC If present, it contains important information
such as documentation errata or other
additions or corrections made to EGUI
Toolkit after the manual went to press.

EGUIMAIN.PCX Form Generators startup screen. This
screen may be disable in the EGUIINI files.

EGUIABT.PCX Form Generators About Box Icon.

¢ \LIB Linker Libraries & Object Modules

EGUIQB45.LIB The EGUI Linker Library for QuickBASIC
4.00b and 4.5.
EGUIBC7F.LIB The EGUI Far String Linker Library for

Microsoft PDS BASIC 7.x.

EGUIBC7N.LIB The EGUI Near String Linker Library for
Microsoft PDS BASIC 7.x.

Set Up (Installation)

EGUIVBD.LIB

SVDMQ45.0BJ

SVDMB7F.OBJ

SVDMB7N.OBJ

SVDMVBD.OBJ

The EGUI Linker Library for Microsoft

Visual BASIC for DOS 1.0.

The EGUI Standard Video Driver Module
Object File for QuickBASIC 4.00b and 4.5.

The EGUI Far String Standard Video
Driver Module Object File for Microsoft
PDS 7.x.

The EGUI Near String Standard Video
Driver Module Object File for Microsoft
PDS 7.x.

The EGUI Standard Video Driver Module
Object File for Microsoft Visual BASIC for
DOS 1.0.

\INCLUDE EGUI Include Files

BWCTR.INC

BWENV.INC

BWPRP.INC

The EGUI Control and Procedure
Declaration File. This file must be include
in any module making calls to the EGUI
Library.

The EGUI Environment Property File. This
file must be include in any module making
calls to the EGUI Library.

The EGUI Control Property and Global
Constant and Variables File. This file must
be include in any module making calls to
the EGUI Library.

\ICON The EGUI Icon Files

There are more than fifty EGUI Icon files which are used with the
EGUI System and Form Generator. There are also some icons which
are used with sample programs. The icon file names starting with the

2-3

EllTech Development, Inc.

letters "BWC" all are used with EGUI Form Generator. The icon files
listed below are used with the EGUI System and must be included with
any applications you create.

BWCMB.ICN ** BWDNARW.ICN BWEROR.ICN
BWINFO.ICN BWLFARW.ICN

BWRTARW.ICN

BWSTOP.ICN BWUPARW.ICN BWWARN.ICN

You may use and distribute icon files in any manner you desire.

\UTILITY EGUI Utility Programs

CM.COM The Compiler Manager Program. This
program may be used to manage the
building of your application during
development. See Appendix C Utilities for
more information.

CMMAIN.CFG The Compiler Manager Main Configuration
File.

CM.CFG The Compiler Manager Local Configuration
File.

PCX2ICN.EXE A conversion program used to convert . PCX

image files to .ICN image files. See
Appendix C Utilities for information on
how to use this program.

\SOURCE EGUI System Source Code

BWMSI1.BAS EGUI System Library Module One.

BWMS2.BAS EGUI System Library Module Two.

Set Up (Installation)

+ \SAMPLE EGUI Sample Programs

There are several directories off the Sample Directory which have
sample Form, Function and Modules files. Read the README.DOC
file in each of these directories to get more information on that sample
program.

* \TMP & \HELP & \DRV EGUI System Directories

The System Temporary Directory (\TMP) is used to store temporary
files which the EGUI System creates during Run Time. This directory
must be off your application's root directory and pointed to in the
EGUILINI file for proper system operation.

The Help and Driver Directories are for future development, but they
should be included with any applications you create.

Procedure Organization

The EGUI Toolkit routines are in two groups, the Control Functions and
Library Functions. The Control Functions are what you will use most to
create your applications. In fact when you build a form with the Form
Generator and produce its source code, you will find that most of the routines
used in this source code are all listed in the Control Functions Chapter. The
Library Functions are a group of high-level and low-level routines which should
be used for developing your application once you begin attaching code.

Important: Make sure to use the procedures in the Library Functions Chapter
which replace BASIC's primitive drawing functions. Such as gDrawLine%
instead of LINE and gDrawCircle instead of CIRCLE, etc., because these
procedures follow the EGUI Video Driver Specification. This will allow you to
change Video Driver Modules and get increased performance and features with
minimum changes to your application.

The other chapters which are very important are Chapters 10 & 11
(Environment and Control Properties). The properties in this system are as
important as the procedures are. They are used much like nested procedures
would be use to control the over all procedures characteristics.

EllTech Development, Inc.

Procedure Declarations (Include Files)

Most of the EGUI Toolkit procedures receive their arguments "by reference"”,
"by value" or by a "segmented address." We have defined the correct
parameter-passing conventions for EGUI Toolkit routines using BASIC's
"DECLARE" statement. The declarations for the Control Functions can be
found in the file called "BWCTR.INC". As long as you SINCLUDE this file
at the top of each program source file that invokes a EGUI Toolkit procedure,
you will not have to give parameter-passing conventions another thought.

There are two other include files which are very important also,
"BWENV.INC" and "BWPRP.INC". These include files define and allocate
memory for the EGUI System Control Property Structures and Global Constants
and Variables. These files should also be included in your application module
code with the SINCLUDE statement. These files will add some overhead to
you .EXE file, but they must be present for proper operation.

Important: All three Include Files must be include in your applications for
proper operation of the library.

Using PDS's and VBDOS "Far String" Option

If you installed EGUI Toolkit for the Microsoft PDS compiler, two LINK
libraries were installed.

¢ EGUIBC7F.LIB For "Far String" versions of the routines.
¢ EGUIBC7N.LIB For "Near String" versions of the routines.

LINK to EGUIBC7F.LIB when compiling with PDS's "/FS" switch and LINK
to EGUIBC7N.LIB when compiling without "/FS." Although the far string
option does make more variable-length string space available, your programs'
performance will suffer slightly due to the complex nature of BASIC's far string
management code.

If you installed EGUI Toolkit for Microsoft Visual BASIC for DOS the
following LINK library was created.

¢ EGUIVBD.LIB

~N

Set Up (Installation)

If you installed EGUI Toolkit for QuickBASIC 4.x or BASIC 6.x, only one
LINK library was created.

¢ EGUIQB45.LIB

Building Quick Libraries

To build Quick Libraries from the Linker Libraries which where created at
installation time move to your EGUI Default Directory and run the
BLDQLB.BAT file with one of the following switches.

/QB45 - Build QuickBASIC 4.x Quick Library
/BC7 - Build MS PDS BASIC 7.x Quick Library "Far Strings"
/VBD - Build MS Visual BASIC for DOS 1.0 Quick Library

Example (shown for OB 4.5):
C: \EGUI>BLDQLB /QB45

Make sure that the correct version of LINK.EXE and also the Quick Library

for the compiler version you are building for, is in your DOS Environment
Path, or the build process will not function properly.

Compiling and LINKing

When "Making an EXE" from within the QB(x) or VBDOS environment, the
resulting .EXE file is usually larger than necessary because the IDE ofien
includes compiler switches which you do not need. For this reason, we
recommend that you compile and LINK your program manually, from the DOS
prompt. This gives you absolute control over what goes into your .EXE file (at
least all of the control that Microsofi gives you). It only involves two steps:

Compile your program's source code files. This is accomplished by using the
BC.EXE program. For example:

BC PROGRAM [switches] ;

EllTech Development, Inc.

"Switches" might include "/O" to make your program a stand-alone, "/FS" to
take advantage of PDS's "far string" option, etc. Consult your compiler
documentation for a complete list of available options. For example:

BC PROGRAM /O ;

This would compile PROGRAM.BAS using the "stand-alone" option,
generating PROGRAM.OBJ.

The next step is to LINK the PROGRAM,OBJ file with all of the other code
required to make it an executable program. Such "support code" is usually
found in libraries, such as BCOMxx.LIB (QuickBASIC), BCL71ENR.LIB
(PDS), etc. For example:

LINK [switches] PROGRAM, , NUL, [libraries] ;

"Switches" usually include "/EX" which compresses your .EXE file by five to
forty percent. PROGRAM is the name of the .OBJ file generated by the
compiler in the first step. The two commas that follow the program name direct
LINK to give the resulting .EXE file the same primary name as the first .OBJ
listed. In this case, the .EXE file will be called PROGRAM.EXE. The "NUL"
directs the LINK program not to generate a "map" file (they're of little use to
BASIC programmers). Finally, you can list one or more entries in the
"libraries" field. By default, the LINK program automatically searches the
compiler support libraries, so there's no need to list them. If you also wish
LINK to look in other libraries as well, such as EGUI Toolkit's library, you can
list it here. For example:

LINK /EX PROGRAM, , NUL, EGUIQB45 ;

This would LINK PROGRAM.OBYJ into an .EXE file. All routines required by
PROGRAM that are present in the BASIC support library and the EGUI
Toolkit library would be brought into the EXE file automatically. Again, only
code required by PROGRAM will be extracted from the library(s) and made
part of the final EXE file. Assuming there were no LINKer errors,
PROGRAM.EXE would be generated and ready to execute at the completion of
this step. '

EGUI Toolkit
Part 2

EGUI Form Generator

Overview

Chapter 3

Overview

What is an Object?

An Object is anything that a user can manipulate as a single entity. Objects
are always the focus of the user's attention.

Control Objects are the primary objects used in the EGUI System. These are
Graphical Entities, such as an Edit Box or Command Button, which are placed
on a Dialog Box Form. Control Objects are use to get input from the user or
display output. Each Control Object has its own set of recognized properties
which allow the manipulation of that Object by the user.

Below is a list of supported Control Objects in the EGUI System. See Chapter
12 for a definition of each of these Control Functions.

Control Function Name
Dialog Box gBuildDialogBox%
Picture Box gDrawPCXFile% **
Label gDrawTextPix% **
Edit Box gEditBox%

Frame Box gDrawRect% **
Command Button gCommandButton%
Check Box gChkOptBox%
Option Button gChkOptBox%
Combo Box gComboBox%

List Box gListBox%
Horizontal Scroll Bar gHorzScrollBar%
Vertical Scroll Bar gVertScrollBar%

** These Functions are not Controls they are procedures in the EGUI Library.
The EGUI Form Generator uses these procedures to emulate a control process.
When the source code is produced by the EGUI Source Code Generator these
procedures will be used. See Chapter 13 for the definitions on these
procedures.

A Dialog Box is also a Control Object however it is referred to as a Form at
Design Time. Anytime a Form is mentioned in this manual it is referring to a
Dialog Box.

EliTech Development, Inc.

During Design Time the Control Objects may be selected from the Control
Menu or from the Control Toolbox. See Chapter 4 Drawing the Interface for
more information.

Design Mode & Run Time Mode

Version 1.0 of the EGUI Form Generator will only run in Design Mode. Afier
a form has been designed, use the Create Form Function from the File Menu
to build a fully functional BASIC Module or Function that may be loaded into
the IDE System or any Text Editor or Compiled. Note that even though the
Form will run after source code has been produced by the EGUI Source Code
Generator (also called the EGUI Source Compiler), it is still necessary to
attach code to the form's events and data structures before the form is fully
functional.

Future versions of this sofiware will have the capability to run in both Design &
Run Time Modes and also allow the attachment of some code to a form within
the Generator. This should allow the full development of small application
within the Generator itself.

Overview

Working with Forms (Dialog Boxes)

When starting the EGUI Form Generator a Dialog Box Form is automatically
created and placed in the center of the display. The form may be moved or
resized as needed while in Design Mode (see Resizing, Moving & Deleting
Controls in Chapter 4 _for more information on moving and resizing forms).

The EGUI Form (Dialog Box) is the foundation for the EGUI System. Forms
allow the user to focus on a specific topic, or a group of related topics, while
isolating the user from other portions of the application. This is one of the key
factors of an Object Oriented Application.

You may only load one form into the Generator at a time. So if you are
working with multiple forms you must save your work and then load or create a
new form.

+ Saving a Form

To Save a Form select Save Form or Save Form As from the File
Menu. If Save Form is selected and you are working with a form that
has an UNTITLED.FRM name the Save Form As Dialog Box will
appear to prompt for a new name. You may save the form as
UNTITLED.FRM, but this is not recommended because each time you
save the form this prompt will appear. When the Save Form As
Dialog Box appears enter a valid DOS filename with the extension
.FRM added to the form name or select a previous form name from the
Files List Box. You may also select a new directory or drive. Then
click the OK button to save the file. Each time the Save Form process
is invoked after this it will simply save the file. You may also create a
copy of a form by doing a Save Form As at any time.

¢ Creating a New Form

To create a new Form select New Form from the File Menu. A
Dialog Box will open allowing you to save the current form before
creating the new one. Select Yes to save the current form or No to
discard the current form. You may also click the Close Button to
Cancel the process.

Eli Lech Development, Inc.

+ Loading a Form

To load an existing form select Load Form for the File Menu. When
the Load Form Dialog Box opens select the form file you wish to load
from the File List Box. You may optionally move to a new directory or

drive to select your file. Click the OK button and the form will be
loaded.

Form files are saved and loaded from the path location specified during the

initial save or load process. For additional information on forms see Chapter 4
Drawing the Interface.

Overview

Color System

The EGUI System is based on True Color Technology. This will allow for
future EGUI Video Driver Modules to support extended Video Color Systems
and Resolutions. This Version of the EGUI Library comes with the EGUI
Standard Video Driver Module (EGUI SVDM). This module supports
display modes 9 and 12 for EGA/VGA video adapters with 16 colors. For most
application one of these modes should be sufficient. It is highly recommended
to use mode 12 standard VGA 16 color if at all possible. The best overall
performance and features will be obtained when using this mode. Also this has
become the industry standard for graphical application. Important: When
using the Standard Video Driver Module with an EGA Video Adapter, the
adapter must have at least 256k of video memory. This module is NOT
compatible with a 64k EGA Video Adapter.

There are 16 EGUI Environment Color Properties which should be used to
assign any color attributes in your application. By using these properties to
assign color attributes it will dramatically improve the capability of
incorporating future enhancement of the EGUI System. This will also make it
easier to add new Video Driver Modules with very little, if any, modification to
your existing code.

+ Environment Color Properties

Property EGUI SVDM Attribute Value
bwEV(0).Black 0
bwEV(0).Brown 1
bwEV(0).Green 2
bwEV(0).Orange 3
bwEV(0).Blue 4
bwEV(0).Magenta 5
bwEV(0).Cyan 6
bwEV(0).DarkGray 7
bwEV(0).Gray 8
bwEV(0).Red 9
bwEV(0).LightGreen 10
bwEV(0).Yellow 11
bwEV(0).LightBlue 12
bwEV(0).LightMagenta 13
bwEV(0).LightCyan 14
bwEV(0). White 15

EllTech Development, Inc.

These properties are initiated when you initialize the EGUI System (See
Chapter 8 Structuring the Application for more information).

The EGUI System uses two color formulas to assign color attributes to controls
and function procedures in the Library. Below are definition of these formulas.

+ Single Coior Formula

The Single Color Formula is nothing more than assigning a single
Environment Color Property to any Control Color Attribute Property
or Library Function Procedure argument. Note that this assignment
may effect the foreground or background information of the object it is
assigned to. You should refer to the documentation on the specific
Control or Function Procedure to determine the effect of this
assignment. Below is an example of the use of this formula. The
environment color cyan is being assigned to the background color of a
Dialog Box.

bwDB(0).dcolr = bwEV(0).Cyan

Multi Color Formula

The Multi Color Formula is the simultaneous assignment of Two
Environment Color Properties to any Control Color Attribute Property
or Library Function Procedure argument. The two color attribute are
passed to the Control or Function Procedure by one value. The
combing of the two attributes is done by multiplying second attribute
value by the value 256 and then adding the first attribute value to this
value. Usually the first color assignment effects the foreground
information of an object and the second color assignment effects the
background information of the object. There are some exception to
this rule but they will be documented where needed. Below is an
example of the use of this formula. The environment color Blue is
being assigned to the foreground text color of a Command Button and
the color Gray is being assigned to the background.

bwBT(0).dcolr = (bwEV(0).Blue + (bwEV(0).Gray * 256))

Overview

System Color Palette Assignment

The EGUI System Color Palette is readjusted at initialization time to
the True Color Palette Settings. Note that this palette information is
controlled internally by the system and may not be adjusted.

Important: One exception to this is the colors Gray an Dark Gray
maintain the Standard IBM PC Color Palette Settings. This is because
of the use of these colors for background information on Command
Buttons.

Important: It is recommended to use the default system palette
settings however, if you wish for your application to maintain the
Standard IBM PC Palette Settings set the Environment Property
bwEV(0).Setpaletteflag to False (0). This may be done in the
EGUILINI file by make the following assignment.

Setpaletteflag = 0

Note that one of the primary purposes of the EGUI System is to allow
the co-development of application in both a Microsoft Windows and
DOS Environment. So by using the default system palette settings any
PCX files or converted .ICN files will maintain a similar appearance
in a DOS application as the Windows version. Also standard Dialog
Boxes and Controls maintain this appearance.

Desktop Color & Background

When the EGUI System is initialized it will display a Desktop
Background by filling the current display screen with a specific color
or loading a .PCX image file. The settings to control this process are
located in the EGULINI file. Use the settings listed below to control
this process.

To assign a Desktop background Color:

Desktopcolr = 12 ‘EGUI SVDM LightBlue Attribute
‘This may be any value (0-15)
'12 is the Default Setting

To assign a Desktop background PCX File:
DeskTopFile = EGUIDEMO.PCX 'Desktopcolr property
'is ignored

EllTech Development, Inc.

To turn off the Desktop Process:

Desktopcolr = -1 ‘Set a -1 Value
—~
Note the PCX file must be a 16 color PCX file format. And preferably
should cover the entire display.
-
e

Overview

Full Form Mode

By default the EGUI Form Generator is set to Standard Form Mode which
will allow the development of a Dialog Box Form about the size of 3/4 the
display. This is more than sufficient for most Dialog Box development.
However occasionally you may need to use the full display to build a Dialog
Box.

To enter Full Form Mode sclect Form Full Screen from the View Menu.
After sefting this mode active the FORM button on the Control Property Tool
Bar will be enabled, you must click this button to edit a full form Dialog Box.

N ___Egui Dialog Box CASE Yool ~ UNTITLED.FRM
Edit View Controls TJools Help

[DialogBox 2] [addobj [¢] [False T (e

Control Property Tool Bar

Selecting the Form Full Screen selection again will set the edit mode to
Standard Form Mode if the Dialog Box is small enough to fit in the Standard
Form Mode Area. If not you must resize the Dialog Box to fit in this area
before switching back to Standard Form Mode.

EllTech Development, Inc.

Font System

The EGUI Font System is based on the built-in EGA/VGA Programmable
Character Generator. The EGA/VGA Video Sub-System allows a character set
to be downloaded. This is taken care of by the System BIOS and the EGUI
Initialization Procedure.

Important: On a EGA Video Adapter the 9x16 Bold Font (EGUI System Font
0) is not available. Only EGUI System Fonts 1 through 6 may be used in
display mode 9 on this adapter.

Any font may be used with any Control Objects in the EGUI System that uses
fonts. Below is a list of the available fonts in the EGUI System.

+ EGUI System Font Numbers

0=8x16 'Bold
1=8x14 'Bold
2=28x14 'Normal
3=8x14 ‘ltalic
4 = 8x8 'Bold
5=8x8 'Normal
6 = 8x8 ‘Italic

+ EGUI System Font File (BWSYS.FNT)

The font file BWSYS.FNT contains the additional downloadable font
sets used by the EGUI Font System which is loaded at initialization
time.. This file must be distributed with any applications developed
with the EGUI Library for proper operation and should be located in
the same directory as the EGULINI file.

Overview

The following Library Function Procedures are used to manipulate the font
system. See Chapter 13 for a definition and usage of these procedures.

gSetEnvFontNum%
gGetSysFontHgt%
gLoadSysFont%

Also see definitions on the following Environment Font Properties in Chapter
10.

FontBackColr
FontForeColr
FontHgt
FontWid
FontTrans

EllTech Development, Inc.

The File Manager

The process of manipulating files in the EGUI System (i.e. creating, saving,

. -—
loading, etc.) are all done with the File Manager. ‘
B " leadFformFila B
File Bame: [p.FRH 7]
Files:
ADDBOOK.FR1 [t}
ADDRESS . FRM
COMBO1.FRN
EXAHPLE .FRM
FULLSCRN . FRH [
NEWFORN.FRIt [y
urren a
| BN:TH
EGUI Fite Manager
-
When the File Manager opens it will have the topic of the task it is performing
in the Title Bar (example: Load Form File). Also the file specification will
reflect the current task. Below is a brief definition of how to use the File
Manager's Controls.
+ File Name: Edit Box
Enter the file name of the Form you wish to manipulate. Be sure to
add a .FRM extension if not already present. You may optionally
enter a drive or directory path. After entering the file information
press ENTER or click the OK button to select.
+ Files: List Box -~

The File List Box contains a list of files from the current path which
meets the current file specification. Highlight a selection from this
box and press ENTER or click the OK button to select a file.

Overview

Directories: List Box

The Directories List Box contains a list of the sub directories from the
current path. Highlight a selection from this box and press ENTER or
click the OK button to select that directory. After selection the path
will be changed to the selected directory and a new file list and
directory list will be shown.

Drives: List Box

The Drives List Box contains a list of the drives which exists on the
system. Highlight a selection from this box an press ENTER or click
the OK button to select the drive. Afier selection the drive will be

changed to the selected drive and the active directory for that drive,
then a new file list and directory list will be shown.

Current Path

This is a display box which shows the currently selected drive and
directory path.

OK Button

Click the OK button with the left mouse button to select a file,
directory or drive entry.

Cancel Button

Click the Cancel button with the left mouse button to exit the selection
process.

EllTech Development, Inc.

+ File Specification

The file search specification which appears in the File Name Edit Box -~
when the File Manager is first opened (i.e. *.FRM). This may be reset
to any legal DOS file search specification. (See you DOS Manual for
more information.)
-
—

Drawing
the Interface

- Chapter 4

Drawing the Interface

Draw

ing Controls

You create the interface of your application by drawing Control Objects on a
Dialog Box Form. A Control Object may be selected from the Control Menu or
from the Control Object Tool Box.

*

Control Object Tool Box

The Tool Box is the primary way of drawing Controls to a Form. The
Tool Box is in a Dialog Box which may be moved around the display
as to allow the viewing of information under the box. There are Icon
Buttons on the Tool Box which represents each one of the Control
Objects and a Pointer for allowing the manipulation of those controls.

Ch

N

Picture Box Label EditBox Frame Box

Command

Button

Pointer . Egui Controls .
i <—l

1 —H) I B - 1
eck Box E] @ Sk EG =2 @ Vertical
Scroll Bar

Option Button Combo Box List Box Horizontal Scroli Bar

Controi Object Tool Box

J

To display the Tool Box select Control Tool Box form the View Menu
or click the right mouse button. When the Tool Box opens the Pointer
Control is already selected. This is because any time the Form is
selected you may manipulate any controls you wish. To select a
Control to draw click the left mouse button on the desired icon. Once
you release the button the Tool Box will close and a mouse crosshair
will be placed in the center of the form. To close the Tool Box without
selecting a control click the Close Button or click the right mouse
button.

EllTech Development, Inc.

Drawing a Picture Box

Click the left mouse button on the Picture Box Control Icon and release the
button. A mouse crosshair will appear in the center of the form. Move the

—
- HEW FORH
ms——

[t [Drawing a
Des| B Picture Box Control

B

O
B>
R

crosshair to the position you wish to place the upper left corner of the Picture
Box Control at and click the left mouse button and release it. Then drag the
other corner of the rectangular box to the position of the lower left corner and
click the left mouse button again this will set the Control Objects Boundaries.

To load a picture into the box select Select Picture File from the Tools Menu
or press SHIFT-F8 and select the PCX image file you wish to load.

Note if the image is larger than the Picture Box the image will be clipped.

All other Control Objects are drawn to the Form in the same manner as the
Picture Box.

Drawing the Interface

Editing Controls

Afier you draw a control you can change its size, move it, or delete it.
+ Resizing Controls

1) Click the control to select it. The control will be outlined with
small rectangles called sizing handles, as shown below.

NEW FORM

NEW FORM

2) To size the height and width of the control at the same time, drag
one of the corner sizing handles, then release the mouse button to
redraw the control.

To size the control in one direction only, drag a sizing handle on
one of the sides, then release the mouse button to redraw the
control.

4-3

EllTech Development, Inc.

+ Moving Controls

To move a control position the mouse pointer anywhere inside the ‘\
control border and drag it to its new location.

Note: Controls located inside of a Frame Box will move with the
Frame Box. In fact if you need to move more than one control at a
time draw a Frame Box around the controls you wish to move, then
move the frame, and then delete the frame.

¢ Deleting Controls

1) Click the control to select it.
2) Press the DEL key or select Delete from the Edit Menu.

+ Copying Controls

1) Click the control to select it.
2) Press the CTRL-INS keys or select Copy from the Edit Menu.

Note: You may use the Cut command from the Edit Menu to copy
and delete a control simultaneously. Press SHIFT-DEL to perform a cut
process.

+ Pasting Controls
1) Press the SHIFT-INS keys or select Paste from the Edit Menu.

2) The new control will be pasted in the upper left corner of the
form. Then Drag the control to its new position.

+ Undo Edit

When you delete or cut a control a copy of that control is maintained
in the Undo Buffer. Select Undo from the Edit Menu to undo your last
delete or cut process.

Drawing the Interface

Setting the Control Tab Order

The Tab Order is the order in which the focus is moved from each
control when the TAB or SHIFT-TAB keys are pressed. Controls are
placed in the Tab Order they are created in.

To reorder the Tab Order select Control Tab Order from the Edit
Menu. The mouse cursor will change to a Hand, place the Hand
Cursor inside the Control Border and click the left button. The
Control Border will be highlighted and the new tab order number will
be displayed inside the control border. After you have clicked every
Control in the form the form will refresh in the new Tab Order. To
stop the process click the right button.

=1 MEV_FORN

Pe=rilRdithed | S yeeomt

~[wistBoxt L-m

Refreshing the Form

When drawing or editing controls on a form sometimes there is paint residue
left over from other controls. To clean up this residue select Refresh Form
from the Edit Menu and the form will be redrawn.

The short cut key F4 may be used to refresh the form any time you are in the
edit mode or have a control selected. This should be much more convenient
then selecting this process from the pull down menu.

Go to Form Key

You may select Go to Form from the View Menu , or use the F6 short cut key,
to move to the last selected control on a Form from the Main Menu Bar. This
is the same as clicking a control with the mouse.

EllTech Development, Inc.

Aligning Controls on the Form

The EGUI Form Generator has a built-in Grid system to help align controls on
a form. When a control is moved you may have noticed that it snaps to a grid
position on the form. This is because the controls are being aligned to the
internal grid. The upper left corner of the control border is what gets aligned to
the grid. Note: that other portions of some control borders may not align with
the grid.

The Grid System is set on 8 Pixel Increments. This means that when the grid is
on a dot will be displayed every 8 pixels, both horizontally and vertically.
Inside the Dialog Box Form Border only.

Alignment to this grid is needed for some of the controls to operate property.
The Controls which should be aligned to the grid system are:

Edit Box
List Box
Combo Box
Picture Box

All other Controls may be optionally aligned using the grid system.

Important: Moving or Resizing these Controls with the snap turned off may
cause undesirable and unpredictable effects.

You may turn the Dotted Grid on and off by selecting Grid from the Edit
Menu.

The snap works independent of the of the Grid System. The snap process is
what actually aligns the Controls to the Grid. The snap may be turn on and off
by selecting Snap from the Edit Menu.

This allows the Grid to be displayed and used as an alignment tool without the
snap process occurring.

A,_

Drawing the Interface

Pull Down Menu Design

To add a Pull Down Menu to a Form select Pull Down Menu Design from the
View Menu. By default the first menu bar item is already created. You may
rename it to anything you wish by selecting the Menu Bar Item Edit Box and

typing the new Item Name.

Important: Make sure to press the ENTER key after an entry in this edit box to

confirm your changes.

¢+ Adding Items to a Menu List

By default place holders for 15 menu items are created for each menu
bar item. This is the maximum number of items that can be added at
Design Time, however this index may be increased in the code after
generating source code for the form if needed. Select the Menu Item
List to added and change your menu items. Highlight the item you
wish to edit and type the changes and press the ENTER key to confirm

your changes.

Menu Bar Item:

2]
fccelerator:

[Insert Menu |
l ;- Dalete Manu: 1

" _Pull Down Mew Design

Menu [tem List:

Menu Item List
fAccelerator:

[1ten Disabled

+ Disable a Menu List Item

To Disable and item in the menu list highlight that item in the list and
click the Item Disabled Check Box.

EllTech Development, Inc.

¢ Adding Accelerator Keys

To add an Accelerator key to a Menu Bar Item select the Accelerator
Edit Box under the Menu Bar Item Edit Box and enter the character
number to use as the Accelerator key.

To add an Accelerator key to a Menu List Item highlight the menu

list item then select the Accelerator Edit Box under the Menu Item List
Edit Box and enter the character number to use as the Accelerator key.

¢+ Adding a New Menu
Click the Add New Menu Button and a New Menu List will be added
to the end of the current menu bar lists. A maximum of 8 menu lists
may be added at design time. This may be increase in code.

¢ Inserting a New Menu

To Insert a Menu Item List select the menu bar item which will follow
the insertion and click the Insert Menu Button.

¢ Deleting a Menu List

To Delete a Menu Item List select the menu bar item to delete and
click the Delete Menu Button.

Afier making all your changes to the menu design click the Done Button.

Important: To make the Pull Down Menu active you must select the Dialog
Box Control by clicking on a part of the Form inside of the Forms Border but
outside of all other controls borders. Then set the pdmenuflag property to
True.

A“

Drawing the Interface

Icon Editor

Icons are graphical representations of an object or concept. They may represent
objects that the user wants to work on or actions that the user wants to perform.
The EGUI System comes with an Icon Editor which may be used to create Icons
to be displayed on Command Buttons or on the Dialog Box Form itself. Icon
Files in the EGUI System have a .ICN file extension. Note: Displaying Icons
on a form must be done in code, it is not supported in the form generator.

+ Loading the Icon Editor

Select Icon Editor form the View menu.

/ Icon Pull Down Menu \

. Egui Jlcon Editor ~ BUEROR.ICN . | Selected

File View Help

Color . £ Color
H INmal InER
Palette ™. H e H//
g HH
IEBRERNI]
{
Icon
Button LR
i O 8208
T I
IAREI |IHBAI

v:[31] nri'@ Rax=tax

Capture Area Icon Edit Area

- J

¢ Loading an Icon File

To load an existing Icon File select Load from the Icon Editor File
Menu. Then select the icon file you wish to load from the file list

EllTech Development, Inc.

Creating an Icon File

Select New form the Icon Editor File Menu. The Icon Edit Area is
cleared and set to a new icon size of 64 x 64. This size may be
readjusted by selecting the width (W:) and height (H:) edit box at the
bottom of the editing area and entering any value between 1 and 64.

Then select a color to paint the icon with from the Color Palette and
click the mouse pointer inside the Icon Edit Area to paint the pixels of
the icon.

The icon is painted in three places. The Icon Edit Area , Capture Area
and the Icon Button. The Capture Area is used to hold a copy of what
the icon will look like when captured. The Icon Button is used to give
you and idea what the icon design is going to look like on a Command
Button.

Saving an Icon File

After you have completed your icon select Save As from the Icon
Editor File Menu. Enter a valid DOS file name with the extension
ICN and click the OK button. You may optionally select a new
directory or drive also.

Icon Editing Grid

The Icon Editor has a built-in grid system that may be turn on and off
from the View Menu by selecting Grid. This will help in locating
each individual pixel.

Icon Edit Zooming

There are also Zoom In and Zoom OQut features located in the View
Menu which may be used to increase and decrease the Icon Edit Area

size.

Important: You may not Zoom In on an Icon which is larger than 32
X 32 pixels.

Drawing the Interface

Tools Menu

The Tools Menu has a list of tools to aid in the setting and manipulation of
controls and properties.

+ Calculate Muiti Color Value

Some control properties require the assignment of a Multi Color
Value (see Chapter 3 Color System for more information on a Multi
Color Value). This tool will calculate this value for you by selecting
the properties foreground and background colors.

Note: Before using this tool you must select a control which requires
this value. If the selected control does not require this value the menu
selection will be unselectable (grayed out).

To use this tool select Calc Multi Color Value from the Tools Menu
or press F9 if a control is selected.

o)

| m:u Color Sslection |
r 16 Calor Pnlllrtc - .

DEJDE]EIDIZIEI ' 7
L= [i s
O Foregrouwnd = e ‘

Sample Forground Text Cade:

@»Blcknr‘uiuﬂ =[::] Fi

Multi Color Calculation Tool

N J

By default the background option is selected when the window opens.
To select the background color click a color on the color palette bars.
The selected color will be displayed to the right of the Background
option and the code for that color placed in the code box.

EliTech Development, Inc.

Then click the foreground option button to select foreground and pick
a color from the palette bars.

The Multi Color Value will be calculated and displayed in the code
box and a sample of your color selection is displayed in the sample box
between the foreground and background option buttons..

Click the PASTE button to paste this value into the property or Cancel
to stop the process.

Note: The effect of this value on the control depends on which control
is selected. See the property definitions for the selected control to
determine the correct selections.

Icon File Selection

To select an Icon file for a control pick Select Icon File from the Tools
Menu or press SHIFT-F7 if a control is selected. The File Manager
will open allowing you to select an Icon File (see Chapter 3 The File
Manager fro more information on using the File Manager).

Picture File Selection

To select a picture file (PCX) for a control pick Select Picture File
from the Tools Menu or press SHIFT-F8 if a control is selected. The
File Manager will open allowing you to select a Picture File (see
Chapter 3 The File Manager fro more information on using the File
Manager).

A~

Setting
Properties

Chapter 5

Setting Properties

The Role of Properties

A property is a named attribute of a Control Object which may be set to define
one of the characteristics of that object (such as size, color, font type, etc.) or an
aspect of its behavior. This chapter explains how to set properties at Design
Time using the Control Property Bar. Also how to set properties in code at start
up time and during run time. Properties of Control Objects are used to fine tune
that objects actions and appearance. This gives you a great deal of control over
an Object.

Each Control Object in the EGUI System has a predefined set of properties
which are set to a default value at creation time. For example a List Box
control has a Vertical Scroll Bar active at creation time. If you do not need a
scroll bar you may turn it off by setting the novsbflag property to True in the
Properties Box on the Control Properties Bar.

Note: You do not have to set every property, only the ones you wish to change
the values of. See Chapter 11 Control Properties for definitions of each of the
different control properties.

+ Property Prefix

Most properties in the EGUI System must have a property prefix when
assigning information to that property in code. A property prefix is
actually the User Defined Type Identifier for the BASIC Language.
Most properties in the system are defined in a user define type
structure (Type-End Type).

Very Important: The EGUI System only declares one instance of
each property type. The same memory location is used to pass
property information to a control for each instance of that control.
This will require that the Control's properties be set before every call to
the control.

You will find the property prefix for each Control with the definition
of that control in Chapter 12 under the sub section Property Prefix.

bwEC(0) .paintobj

Property Prefix J I— Property

EliTech Development, Inc.

Using the Control Property Bar

The Control Properties Bar is locate below the Main Menu Bar as shown below.
You use this bar to select and set properties for Control Objects.

Main Menu Bar & Control Property Bar

|DialogBox | | [addobj

e

Select a Control here. Type a new setting here.
{Control Box) (Property Edit Box)
lect Click here or press ENTER
S a Property here. to confirm the new setting
(Property Box)

Click here or press ESC
to restore the orginal settin

S

+ Editing a Control Property

1)

2)

3

Select the control by clicking it with the mouse pointer. The
Control Name will appear in the Control Box. You may also
click the Control Box Combo Button and then select a control
from the list.

Click the Property Box Combo Button and select the property
from the list that you wish to edit.

Click the Property Edit Box to enter a new value. Note: If the
Property Edit Box Combo Button is active you may only pick an
option from the Drop Down List. You may not type an entry in
this case. To pick from the drop down list click the combo button
to the right of the Property Edit Box. Select from the list and then
press ENTER or click the confirm button.

A,

A

Setting Properties

Other Ways to set Properties

Properties are set at Design Time using the method describe in Using the
Control Property Bar. Property may also be set in code at Run Time. The
example code below shows how to set properties at Run Time for a Horizontal
Scroll Bar. Use this example to help understand setting properties at Run
Time. Also see Chapter 9 Attaching Code to Controls for more information.
Note: Remember you must create source code and load it into the IDE System
or compile it for Run Time Mode.

'This code should be located in the Draw Dialog Box Section
'‘of the DBFormat
'Setup Horz Scroll Bar Number 1 ------=-----mmmmmm oo

GOSUB EXAMPLEReSetHorzSBarl

bwsSB(0) .paintobj = -1
bwSB(0) .addobj = -1
bwsSB(0) .update = -1

retcode% = gHorzScrollBar$

‘Place this code in a Case Statement in the Window Main Loop
CASE case_select_number

GOSUB EXAMPLEReSetHorzSBarl
retcode$ = gHorzScrollBar$%
bwHorzSBarVall! = bwSB(0).value
IF retcode% = -3 THEN

GOSUB EXAMPLEProcessKey
END IF

‘Place this code in the Dialog Box Properties Section of the
‘DBFormat
EXAMPLEReSetHorzSBarl:
bwSB(0) .paintobj 0
bwSB (0) .addobj =
bwSB(0) .update =
bwSB(0) .tabflag = -1
bwSB(0) .enable = -1
bwSB(0) .objid = -1
bwSB(0) .status = 0
bwSB(0).x1 = (x1% + 24)
bwSB(0) .yl = (y1% + 288)
bwSB(0) .ocbjheight = bwStandButwid%
bwSB (0} .objwidth = 400
bwSB(0) .frame = 20
bwSB(0) .value = bwHorzSBarVall!
bwsSB(0) .min = 0
bwSB(0).max = 100
bwSB(0) .smallchange
bwSB(0) .largechange
RETURN

0
(4]

inn
(8]

EllTech Development, Inc.

System Environment Properties

The EGUI System has a set of predefined System Environment Properties AH

which are used to control the overall application appearance and behavior.
These are attributes like Title Bar Color, Border Width, Default System Font
Number, Dialog Box Color and more.

These properties are set in the same manner as Control Properties are in code.
There is no method of setting these properties in the EGUI Form Generator,
however they may be set in the EGULINI file.

The default settings, which may be adjust in the EGULINI file (see Appendix F
for information on the EGUI Initialization File Format), are loaded at System
Initialization Time,

Important: Once you have set a System Environment Property this property
value may be used throughout the application and shared by different Control
Objects. Be sure to save old settings if they will need to be reset.

Note: Some Environment Properties have duplicate Control Properties.
Example bwEV(0).DialogBoxcolr and bwDB(0).dcolr are both used to set the
Dialog Box Control background color. In the cases where there are duplicate
properties the Control Property will override the System Environment Property
if it is set to a valid value. Usually if the Control Property is set to zero (0) the
Environment Property is used. See the control property definitions in Chapter
11 for more information.

Sec Chapter 10 Environment Properties for a complete definition on all the
available System Environment Properties.

 Cr eating Form
SOUI’Ce C()de

Chapter 6
- _

Creating Form Source Code

The Source Code Compiler

The EGUI System use a Source Code Generator (Compiler) Application to
interpret the Form Files and build BASIC Source Code Files. The Source Code
Files may then be loaded into the IDE System or Compiled by the BASIC
Compiler.

The Source Code Files (.FNC or .BAS files) may be built from the DOS
Command Line or from inside the EGUI Form Generator. This section covers
the use of the Source Code Compiler from the DOS Command Line. See the
next section in this chapter Building Source Code Modules for information on
how to use the Source Code Compiler from inside the Form Generator.

Below is the syntax for the Source Code Compiler. To get a help screen from
the command line type EGUISGEN /H.

+ Source Code Compiler Syntax

EGUISGEN [path]filename FRM /FN=functionname [/S] [/L} [/BM] [/SC]

¢+ Source Code Compiler Switch Definitions

/FN= Sets the Function Name. This is NOT Optional. The Function
Name is the name of the procedure you are going to build.
This may be any valid BASIC Function Procedure name.

Important: Because this name is concatenated with other
local procedure names you must keep the name length to a
maximum of 20 or less (the fewer the better).

/BM Sets the Build Module Flag. This flag will cause the Source
Code Compiler to build a BASIC Module with the EGUI
Include File Code already in it.

If this switch is not set the Compiler will build a Function
File which must be merged into your module code. This can
be done from inside of the IDE System by first loading the
Module Level Code an then selecting Merge from the File
Menu and merging this function into the module.

EllTech Development, Inc.

ISC

/S

/L

Sets the Build Module with StartUp Code Flag, the /BM
switch must be set prior to this switch.

The EGUI System requires some startup code to Initialize the
System. If you are building a new module it is recommended
to use this switch. After this module is built it may be loaded
into the IDE System (or Compiled) just like any other BASIC
Modules. This should be you Main Module Code.

Sets the STATIC Flag. This will cause the Compiler to place
the STATIC keyword after the Function Name. This switch
is not recommend unless you must maintain all the variable
information in the procedure during calls. This is usually not
needed.

Sets the LOCAL ERROR Flag. The Compiler will build
Local Error Checking Code into your procedure if this switch
is set.

Important: This switch is only compatible with MS PDS 7.x
and VBDOS 1.0. Do not use this switch with procedures
being built for the OB 4.x Compiler.

The Source Code Compiler will name the New Source Code File the same name
as the Form File with the new extension, either .BAS or .FNC which every is
appropriate.

Note: If the BASIC Module or Function File already exists the Compiler will
prompt you for the go ahead to rebuild the procedure before building it.

Creating Form Source Code

Building Source Code Modules

=~ You may build Source Code Files from within the EGUI Form Generator. If
you elect to, the Generator will shell out and invoke the Source Code Compiler
the reload the Generator and current form,

+ Building a Source Code File

1) Select Create Form Function from the File Menu. The Build
Form Function Dialog Box will open.

2) Enter a Function Name in the Edit Box. By default the form name
will appear in the Edit Box this may be changed to any valid
BASIC Function Name (a Maximum of 20 Characters).

3) Set any options from the Option Frame Box you desire.

- 4) Click the Build Module button if you wish to build a BASIC
Module or the Build Function button if you want a Function File.

Function Name: [ADDBOCK]

Options -
"Build Wodule.

Local Error Checking =

[0 set STATIC Indicator Build Punction

Save Form File

Add StartUp Code

 Cancel

] Y

The Source Code Compiler will be invoked and the Source Code File will be
o= placed in the same location as the Form File.

If you build a Function File this code must be merged into a BASIC Module.
This can be done from inside of the IDE System by first loading the Module
Level Code an then sclecting Merge from the File Menu and merging this
function into the module.

Printing
Forms

__—___——————_____—_—__——C'——_—_——_La—p__teLz_

Printing Forms

Printing a Form Image

You may print Form Images to a HP Laser Printer or an IBM Dot Matrix
Printer or 100% compatible printer. The best results will be accomplished with
a laser printer.

Select Print from the File Menu and the Print Form Dialog Box will open. The
Dark Gray rectangle on the Layout Sheet is a representation of your form. By
default the form will be set to its actual size when you open the Dialog Box.
You may scale the form print size up or down by clicking the Horizontal Scroll
Bar. The form may be printed in portrait mode only.

After selecting any option necessary click the Print Form button to print.

/E]\

[Port Layout

@® Draft
O Quality

[Device .

t
® Laser Je FE TR

© Dot Matrix

Print Fora |

Form Feed

NG

A Dialog Box will open showing the percentage done of the print process.
Once the process is complete both Dialog Boxes will close.

EGUI Toolkit
Part 3

Application Development

A

Structuring
the Application

Chapter 8

Structuring the Application

DBFormat Structure (Dialog Box Code Format)

The EGUI DBFormat is simply a way of organizing your code in a function
procedure so that it is much easier to develop. Below is a block diagram of the
DBFormat Structure. Important; Using the DBFormat is optional, because we
understand that being the veteran programmer that you are, you may already
have a procedure format you are comfortable with. The EGUI System will
work find in many formats, however we use this format to indicate where to
find code and where to put code when you are attaching code to your
application. Also the EGUI Source Code Compiler uses this format when
building dialog box code. So it is recommended that you are at least familiar
with this format.

FUNCTION Procedure ()

Dialog Box
Initialization Main Body
l Case
g
<€ Move DB Statement

l Exit

Draw Dialog Box «——
Section

Dialog Box Properties

Section

Local Dialog Box

Window Procedures

Dialog Box ‘
Key Handler

Dialog Box ,
[Local Error Handler]

END FUNCTION

EllTech Development, Inc.

See the source code in Chapter 12 under Pull Down Menu Control to help
associate yourself with the format in code.

Important: Make sure any time you exit the dialog box procedure you exit

through the local exit point. This will make sure that the Dialog Box will close
properly and remove all its objects from the object list.

Loading Form Source Code

After you have produced some form source code with the EGUI Source Code
Compiler you may load it into the BASIC IDE System or into your favorite Text
Editor.

If you are using the IDE system and are loading a Source Code Module which
should have an extension of .BAS the select Open or Load from the File menu.

If you are using the IDE system and are loading a Source Code Function File
which should have an extension of .FNC the place your cursor at the insertion
point in your code and select Merge from the File menu. The procedure
should be loaded and you can move to the procedure by pressing F2 and
selecting it from the SUBs Window .If your are loading a function file into a
text editor it is recommended to merge the code at the end of you current code.

Initializing the EGUI System

It is necessary to initialize the EGUI System before using it. If you are creating
you main module code from the Form Generator this step is taken care of for
you. If not the following code should go in your main module before you call
any procedures in the EGUI System.

‘Clear Extra Stack Space ------------------------—-eo—————e—ee
CLEAR , , 3000

'Set Standard Screen Mode 12 VGA (640x$80 16 Color) ----------
Vmode% = 12 '9 for EGA

Clrscrflagy = -1

retcode% = gSetVideoMode% (Vmode%, ClrScrflag%)

‘Initialize Egui System --~-------momo e o
IF NOT retcode% THEN

retcode$ = gInitBWSystem$%
ELSE

GOTO MainExit 'This will exit if an error occured
ENDIF

8-2

Structuring the Application

Display Modes & Viewports

The EGUI System with the Standard Video Driver Module only supports EGA,
BASIC's screen mode 9, and VGA BASIC's screen mode 12. VGA screen
mode 12 is the recommend mode to use for most of your application. These two
modes are the most optimal graphics screen modes that BASIC supports.
Meaning that their are a lot of applications which may be developed using these
modes without any lose in features.

¢ Supported Display Modes for the SVDM

EGA - BASIC's Screen Mode 9
VGA - BASIC's Screen Mode 12
TEXT - BASIC's Screen Mode 0 (this mode may be set on exit)

These modes should be set in the main module before any other library routines
are called. Use gSetVideoMode% to set the video mode (see Chapter 13 for
more information on this procedure). Note you may also reset to Text Mode,
screen mode 0, just before ending you program.

When creating a BASIC Source Code Module from the EGUI Generator the
default screen mode is VGA. All the code needed to set the proper screen mode
will be built for you.

Important: The SVDM uses most of the BASIC's built in Graphics Primitives
(i.e. Line, Circle, etc.), with a few addition that BASIC left out. Be sure to read
Chapter 13 and note the similarities and differences between these primitives.

The Standard Video Driver Module (SVDM) is the default Video Driver
Module which comes with the EGUI System. There will be an Enhanced
Video Driver Module (EVDM) available as an add on product which will
support other Graphics Libraries. This driver, in combination with the other
graphics libraries, will allow you to create application in about 15 to 20
additional screen modes, from Hercules 720x350 2 color to Super VGA
1024x768 256 color, and many modes in between. BASIC itself by its self does
not support these additional modes. Note the EVDM will impose different
hardware requirements, which will be specify with the driver.

EllTech Development, Inc.

+ Viewports

The only viewport that the EGUI System use is the full screen
viewport. The BASIC View or Window statements are not used to do
any clipping of the graphics primitive elements of the system. In fact
there is very little clipping done in the library at all. This is because
clipping adds a great deal of overhead in processing time of certain
procedures.

Be careful when using these statements in your code. This is because
the SVDM uses BASIC's built in Graphics Primitives, and when you
use these commands you also effect the SVDM. Also remember that
the addition primitives that the EGUI System has added do not
respond to these statements in the SVDM.

Important: There are some properties which exist in the EGUI System
which will not have and effect on the SVDM. They are intended for
use with the EVDM.

Window Types (Modal Dialog Boxes)

The EGUI System only supports Modal type Windows or Dialog Boxes.

+ Modal Dialog Box

A Modal Form is a Dialog Box which once open retains the focus
until the window is closed. You may not move the focus to another
Dialog Box until the current Dialog Box has been closed.

This is similar to many existing DOS application today and should
cause no problems for application development.

A Dialog Box may have a wide border or a thin border. This is
selected with the Dialog Box Control's nonborderflag property. The
purpose of the Dialog Box border in the current EGUI System is for
aesthetics. However in future versions we hope to implement the
ability to size a Dialog Box. Then the border types will play a role in
this process. You might keep this in mind when developing your
applications. A wide border will be used to indicate that it is sizable
and a thin border will indicate that it is not sizable.

Structuring the Application

+ Dialog Box Instances

There may be a maximum of 7 Dialog Boxes open at one time. Each
one of these windows are consider an instance of the Dialog Box
Control.

The first instance of a Dialog Box Control functions a little differently
from all other instances. The first instance will allow you to design
controls and place them outside of the Dialog Box Border. Then if a
mouse event occurs outside the dialog box border the system will react
to the event. This will allow you more freedom when creating your
main Dialog Box Control.

Instances two through seven of the dialog box control will not react to
any controls placed outside the border of there parent Dialog Box. In
fact if you click a mouse outside this area you will get a beep and no
other processing will continue until you release the mouse button.

Important: You should never place a control outside of any Dialog
Box Control border except for the first instance of a Dialog Box. But
remember there is no clipping done in the EGUI System so it is up to
you to may sure that a control's border remain inside its parent the
Dialog Boxes' border. This process is done for you in the EGUI
Generator, however once the source code is created the balls in your
court.

| Add Tack to Schedule '
Eile Edit Help
Task Name: |]
Dua By
Cancel
@ As soon as possible
QO bate - —
New -
e B
Note: Daliy Beminder
ListBox1
- D

EllTech Development, Inc.

Where and How to Use Control Objects

The overall topic of User Interface Design and how an applications focus is -
organized is an extremely large subject and is beyond the scope of this manual.
However we would like to cover some of the more basic User Interface Design
techniques and give you some tips for controlling the focus of your application
development.

The EGUI System uses Control Objects to organize the focus in an application
by giving the user a transfer point for communications. This transfer point
allows the user to focus on the current topic and to interact with the application.

Below is a list of the supported controls in the EGUI System, and a description
of there usage.

+ Dialog Box Control gBuildDialogBox% &
gRemoveDialogBox%

The Dialog Box Control is used to outline a portion of the display so
that the user will focus only on that portion. The Dialog Box will
contain user interface components that are supported by the EGUI
System through controls that allow the user to select choices and enter
information.

Below is a typical Dialog Box:

ﬁ-l Add Task to Bchedule

File Edit Help

Task Name: |]
Dum By

@ = soon as possible
O Date

Nate: [#] Daliy Reminder
ListBoxi

Structuring the Application

¢ Check Box Control gChkOptBox%

Check boxes control individual choices that are either turned on or off.
When the choice is turned on, the check box shows a check mark, or a
dark square or an X in it, depending on the setting of the buttontype
property. When the choice is turned off, the check box is blank. The
user can toggle the state of a check box by clicking on the box or by
setting the focus on the check box and pressing the select key
(SPACE-BAR). Below are some typical check boxes.

-1 Change File Attributes

@ 1t oy
@ rchie

[] Hidden
O systen

Option Button Control gChkOptBox%

An option button represents a single choice in a limited set of mutually
exclusive choices. Accordingly, in any group of option buttons, the
user can only select one at any time. Option buttons are represented by
circles which have the appearance of raised round buttons. When an
option button choice is selected, the circle is filled; when the choice is
not selected to circle is empty. If the number of option buttons in a
group exceeds five it is recommended to replace the buttons with a
dropdown list box. Note: The Form Generator produces the code
necessary to make option buttons function in a group. If you are
adding option buttons in code you must add this code yourself. Below
are some typical option buttons.

-} Sort Options

EllTech Development, Inc.

¢+ Combo Box Control gComboBox%

A Combo Box is an Edit Box with an attached List Box. There are
two types of comb boxes, a Standard Combo Box and a Dropdown List
Box. The Standard Combo Box allows the user to enter text in the edit
box or to pick an item from the list. A Dropdown List box will only
allow the user to pick a choice from the drop down list.

When a combo box has the focus use the DOWN ARROW key or click
the Combo Box Button to drop the list down. Once in the list the list
will functions like a normal List Box Control. To make a selection
highlight the item you wish to select and press ENTER or click inside
the edit box control. The list will close and the focus is returned to the
edit box.

You should use a Combo Box when the user may type a selection or
pick it from a list.

See the Combo Box Control definition in Chapter 12 for an example.

Command Button gCommandButton%

A Command Button is a graphical control that initiate an action when
it is clicked or selected with the select key. The action taken is related
to the label on the button. Example if you have a button that has the
label Cancel on it, when this button is clicked it should cancel the
current process and close the dialog box .

You should use an icon (picture) on a command button when the label
may not be concisely represented with a textual label. You may
display an icon on a button by setting the button icon property to True
(-1) and set the icon file name in the iconfile property. You may also
adjust the horizontal and vertical alignment of the icon with the
iconx1off and icony1leff properties.

You either display text or an icon on a command button you may not
do both. And exception to this is if your icon has text in it.

See Chapter 12 for an example of a Command Button .

-

Structuring the Application

+ Edit Box Control gEditBox%

Edit Boxes are controls into which the user types information. The
user may except the current text , edit it or delete it. The LEFT and
RIGHT ARROW keys are use to position the insertion point. The
HOME and END keys are used to position the cursor at the beginning
and ending of the text. The BACKSPACE key will crase the previous
character and position the cursor to the left one character. The
DELETE key will erase the current character, and the INSERT key will
toggle the editing modes between Overtype and Insert Modes.

Note: When in Insert Mode you may only insert text until the edit box
string length is at it's maximum length. One the maximum length is
reached you must erase text before you may insert any more.

For a Multi-Line Edit Box use the List Box Control with the editflag
property set to True (-1). This will combine the functionality of the
List Box for scrolling and the Edit Box for editing. Important: There
is no word-wrap capability in the muiti line edit box. It functions only
like a text editor. There are two line edit key features available,
CTRL-L to insert a Line and CTRL-D to delete a line. Note: Once you
have inserted text to the end of your list box array the you may not
insert any more until you delete a line.

Below are some typical edit box and multi-line edit boxes.

=1 Add_Task to Schedule
File Edit Help
Jask Mawe: I 1 | oK l
Due By
® fs soon as possible
©
[ComboBox1] (2]
Note: [v] Daliy Reminder
ListBox1

EllTech Development, Inc.

+ Scroll Bars gHorzScrollBar%

gVertScrollBar%

Scroll Bars are graphical tools for quickly navigating through a long
list of items or a large amount of information, and for indicating the
current position on a scale.

Note: The Horizontal Scroll Bar in the EGUI System has a fixed
height and the Vertical Scroll Bar has a fixed width.

The Scroll Box in the EGUI System will automatically adjust itself to
represent the currently viewed portion of the unit the scroll bar is
showing a measure for. The dark area before or after the scroll bar
represents the portion of the unit that is not being viewed.

To move a scroll bar by its small change value click the Top/Left or
Button/Right scroll buttons or when a scroll bar has the focus you may
also use the UP and DOWN ARROW keys.

To move a scroll bar by its large change value click the dark areas of
the scroll bar below or above the Scroll Box or when a scroll bar has
the focus you may also use the PAGE-UP and PAGE-DOWN ARROW
keys.

See Chapter 12 for an example of Scroll Bars.

List Box gListBox%

The List Box Control displays a list of items from which the user may
choose one. Exception: If the tagflag property is set to True (-1) you
may pick multiple items.

A Vertical Scroll Bar is automatically displayed with a list box. This
may be disable using the novsbflag property. You may also add a
Horizontal Scroll Bar if needed by using the hsbflag property.

You may also add a Header and Separation lines to a list box. See the
definition in Chapter 12 of a List Box for more information.

)

Attaching Code
to Controls

Chapter 9

Attaching Code to Controls

Event Procedures & Control Return Codes

Once you have created a Dialog Box Form and generated source code it will be
necessary to attach code to the appropriate event to make your form fully
functional. Each Control Object in the EGUI System returns a code which
indicates what type of event was trapped. There are two primary events which
may return an event code, see the listing below for a list of possible return
codes.

Event Return Codes ﬁLT i

Control Mouse Click Key Press * < TRV
T
Check Box -3
Option Button -3
Combo Box -3
Command Button -2 -3
Edit Box -3
Scroll Bar -3
List Box -3
Pull Down Menu -3

+ Key Press Events

When a key press return code is set the actual key or key combination
may be retrieved from the KeyPress% property. If a single key is
pressed the key press property will equal the ASCII value of that key.
If a shift key combination is pressed the key property will store that
specific shift key combination. The values of these key combinations
may be found in the appendix section of your BASIC manuals. Below
are some example values.

Character ASCII Shift- Cirl- Alt-
S 115 83 19 -31
F 102 70 6 -33
| 112 80 16 -25

Important: The Alt key combination will return a negative value of
the key code. Also once the alt key has been depressed it will only trap
the first occurrence of a key press, then the Alt key must be released
before more key presses can be trapped.

EllTech Development, Inc.

+ Mouse Click Events

The only control which returns a mouse click event directly is the
Command Button. This is done when the mouse button has been fully
depressed and released over the button. Note: the left mouse button is
the button which is being trapped.

Note: It is recommended that you place code to test for an event after each call
to a control. This process is done for you if you are using the form generator.

Key Press Event Handler

It is necessary to set up a section of code to respond to key press events. This
process is none for you by the form generator, however you may need to add
additional traps.

The purpose of the Key Press Event Handler is to give you a centralized
location for responding to key presses.

It is recommended that the Key Press Handler be local to the procedure. This
should reduce the number of variables which would have to be passed or made
global so that and external routine could access them. Below is an example of a
Key Press Event Handler.

FUNCNAMEProcessKey:
IF KeyPress% = -23 THEN 'Key = ALT-I
ELSEIF KeyPress% = -45 THEN 'Key = ALT-X
ELSEIF KeyPress% = 27 THEN 'Key = Esc
FUNCNAMES = 27 'Cancle Process
GOTO FUNCNAMEExit
END IF .
RETURN

Note: The key traps that are created by the form generator are the Controls and
Labels which have an Accelerator Key assignment.

9-2

-~

Attaching Code to Controls

Status Property

Each Control Object in the EGUI System has a status property. If this property
is set to True (-1) then that control will echo the event information that the
control object itself is trapping. This will give you more flexibility for trapping
events.

Very Important: Because this information is being returned back to your
application this means you may do what ever you wish with that information at
the time of the event. But remember that the event is being echoed back and
the control object itself may not be completed with all of its processing. For this
reason it is recommended that you store the event information, or only do short
process and then pass control back to the control object as soon as possible.

Example: 1f a Command Button is clicked the button will normally
depress and then restore itself before passing the event back to your
application. If the status property is set to true the event may be passed
back before the button can restore itself.

The status property should be very useful but be careful not to interrupt the
process of a control object or unpredictable results may happen.

Maintaining Control Pointers

There are four properties which maintain pointers to information about control
objects aptr, dptr, eptr and rptr. These properties are set to default settings at
startup time however they are changed at run time. You must set up temporary
variables for storing this information. The EGUI Form Generator takes care of
this for you , however if you add a control which uses one of these pointers you
must add this code also.

The steps for adding this code are (List Box is used for the example):

1) Setup temporary variables in the Dialog Box Initialization Section
and assign the default startup values (see each property for their
default values).

dptrls=1
aptrlg=1
rptrls=1

EllTech Development, Inc.

2) Use the temporary variable to assign the property value in the
Dialog Box Properties Section.

bwLB(0) .dptr=dptrl#%
bwLB(0) .aptr=aptrl%
bwLB(0) .rptr=rptrl$%

3) Update the temporary variable after returning from the control
object in the DB Main Body .

CASE 10

GOSUB EXAMPLEReSetListBoxl1
retcode% = gListBox%(Arrayl$(), ArrayHeaderl$)

dptrl% = bwLB(0).dptr ‘Update Index Pointers
aptrl% = bwlLB(0).aptr
rptrl% = bwLB(0).rptr
IF retcode% = -3 THEN
GOSUB EXAMPLEProcessKey
END IF

See the code generated by the Source Code Compiler to get more examples on
how to build this code.

EGUI Toolkit
Part 4

Controls, Properties & Functions

Y

Environment
Properties

Chapter 10

E

Environment Properties

EGUI System Environment Properties

Below is a list of description of the EGUI Environment Properties. These
properties which are global to the system and are declared in the BWENV,INC
include file, are used to control different aspects of the EGUI Environment as a
whole.

Important: All environment properties must be prefixed with bwEV(0). for
proper operation.

Property Description

ActiveCtriNum For control object's internal use. See Building
Custom Controls (Appendix B) for more
information.

Data Type: Integer

Black Attribute place holder for the color black. See Color
System for more information.
Data Type: Long

Blue Attribute place holder for the color blue. See Color
System for more information.
Data Type: Long

Bordercolr The color to paint the active Dialog Box Border. The
default color is light blue.

bwEV(Q) .Bordercolr = bwEV((Q).LightBlue

Data Type: Long

10-1

ElilTech Development, Inc.

Borderwid The width to draw a Dialog Box Border. The default
width is 3. Minimum = 2, Maximum = 8

bwEV(0) .Borderwid = 3 .~.

Data Type: Integer

Brown Attribute place holder for the color brown. See Color
system for more information.

Data Type: Long

ChkBoxcolr The color to paint the inside box of a Check Box
Button when it is set active. By default this color is
black.

bwEV(0) .ChkBoxcolr = bwEV(0).Black e Y

Data Type: Long

Controlcolr The color to paint the background of an edit box or
list box control. The default color is white.

bwEV(0) .Controlcolr = bwEV(0).White

Data Type: Long

Controltextcolr The color to paint the text in an edit box or list box

control. The default color is black. .

bwEV(0) .Controltextcolr = bwEV(0).Black

Data Type: Long

10-2

Environment Properties

CurFontNum

Cyan

DarkGray

DefFontNum

The current selected font type.
0=8x16 'Bald
1=8x14 'Bold
2=8x14 'Normal
3=8x14 ‘Italic
4 = 8x8 'Bold
5=8x8 ‘Normal
6=28x8 'Italic

Data Type: Integer

Attribute place holder for the color cyan. See Color
System for more information.

Data Type: Long

Attribute place holder for the color dark gray. See
Color System for more information.

Data Type: Long

The default font type, this may be set in the
EGULINI file with DefFontNum = fontnumber.

0 =8x16
1 =8x14
2 =8x14
3 =8x14
4 =8x8
5=28x8
6 = 8x8

'Bold
'Bold
'Normal
'Italic
'Bold
'Normal
"Italic

Data Type: Integer

10-3

ElliTech Development, Inc.

DeskTopcolr

DialogBoxcolr

DialogBoxtextcolr

DisplayMode

The color to paint the Desk Top Background during
start up. The default color is light blue.

bwEV (0) . DeskTopcolr = bwEV(0).LightBlue
This may be set in the EGULINI file with
DeskTopcolr=12 (where 12 is the a color number
0-15).
Data Type: Long
The color to paint a Dialog Box background. The
default color is white.

bwWEV(0) .DialogBoxcolr = bwEV(0) .White
This may be set in the EGULINI file with
DialogBoxcolr=15 (where 15 is the a color number
0-15).
Data Type: Long
The color to paint Dialog Box text. The default
color is black.
bWEV (0) .DialogBoxtextcolr = bwEV(0).Black
This may be set in the EGULINI file with
DialogBoxtextcolr=0 (where 0 is the a color number

0-15).

Data Type: Long

The current screen display mode. This must be set to
a value of 9 for EGA or 12 for VGA. See Display
Modes and Viewports for more information.

Data Type: Integer

10-4

A

Environment Properties

DoubleClickTime

FontBackcoir

FontForecolr

FontHgt

The delay time that the system will wait for a second
mouse click on the same object. The default is 6.

Minimum =0
Maximum = 32

bwEV (0) .DoubleClickTime = 6

This may be set in the EGULINI file with
DoubleClickTime=6.

Data Type: Integer

The color to paint the active font background. The
default is the wvalue that the property
bwEV(0).DialogBoxcolr is set to.

bwEV(0) .FontBackcolr = bwEV(0) .White

Data Type: Long

The color to paint the active font foreground. The
default is the wvalue that the property
bwEV(0).DialogBoxtextcolr is set to.

bwEV (0) .FontBacktextcolr = bwEV(0).Black

Data Type: Long

This is the active font height. The value may be read
by a program, but it is set buy the system and should
NOT be reset.

Data Type: Integer

10-5

EllTech Development, Inc.

FontTrans

FontWid

FontUSOffset

Gray

Green

HighLightcolr

Flag which indicates that fonts will be drawn
transparently if set to True.

bwEV(0) .FontTrans = True ‘or (-1)

Data Type: Integer

This is the active font average width. The value may
be read by a program, but it is set buy the system and
should NOT be reset.

Data Type: Integer

For future development currently not supported.
Data Type: Integer

Attribute place holder for the color gray. See Color
System for more information.

Data Type: Long

Attribute place holder for the color green. See Color
System for more information.

Data Type: Long

The color to highlite and item in a list box or combo
box. The default value is white on black.

bwEV(0) .HightLightcolr = _
(bwEV(0).White + (bwEV(0) .Black *
256))

NOTE: This property uses the multi color formula.

Data Type: Long

10-6

-

Environment Properties

InActBordercolr

InActTitlebarcolr

InActTitlebartextcolr

a=. | ightBlue

The color to paint an inactive dialog box border.
The default value is gray.

bwEV (0) . InActBordercolr = bwEV(0).Gray

This property may be set in the EGULINI file with
InActBordercolr=7 (where 7 is the a color number
0-15).

Data Type: Long

The color to paint an inactive dialog box title bar
background. The default value is gray.
bwEV(0).InActTitlebarcolr = bwEV(0).Gray

This property may be set in the EGULINI file with
InActTitlebarcolr=8 (where 8 is the a color number
0-13).

Data Type: Long

The color to paint inactive dialog box title bar text.
The default value is black.
bwEV(0).InActTitlebarcolr = bwEV(0).Black

This property may be set in the EGULINI file with
InActTitlebartextcolr=0 (where 0 is the a color
number 0-15).

Data Type: Long

Attribute place holder for the color light blue. See

Color System for more information.

Data Type: Long

10-7

EllTech Development, Inc.

LightCyan

LightGreen

LightMagenta

Linestyle

Logicoper

Attribute place holder for the color light cyan. See
Color System for more information.

Data Type: Long

Attribute place holder for the color light green. See
Color System for more information.

Data Type: Long

Attribute place holder for the color light magenta.
See Color System for more information.

Data Type: Long

A 16-bit hex value integer mask used to draw pixel
to the display by the line function. See

gDrawLine% function for more information.

bwEV(0) .Linestyle = &HFFFF (Solid Line)

Data Type: Integer

An integer value indicating that a logical operator is
to be used with a graphics function.

bwEV (0) .Logicoper = 0 (PSET)
0=PSET

1=0R

2=AND

3 =XOR

These parameters are different for displaying images
and icons. See gLoadlcon% function for more
information.

Data Type: Integer

10-8

Environment Properties

Magenta

Mouseflag

MovSzDBChkflag

Mousewait

4~ Orange

Attribute place holder for the color magenta. See
Color System for more information.

Data Type: Long

For internal use only.

Data Type: Integer

For internal use only.

Data Type: Integer

Integer value indicating the amount of delay time for
the mouse action to wait before processing additional
clicks. The default value is 8.

Minimum =0
Maximum = 16

bWEV(0) .Mousewait = 8

This property may be set in the EGULINI file with
Mousewait=8.

Data Type: Integer

Attribute place holder for the color orange. See
Color System for more information.

Data Type: Long

10-9

EliTech Development, Inc.

Outlinecolr

Red

Scrollbarcolr

Setpaletteflag

The color to draw the outlines for all system objects.
The default for this is black.

bwEV(0) .Outlinecolr = bwEV(0).Black

This property may be set in the EGULINI file with
Outlinecolr=0 (where 0 is the a color number 0-15).

Data Type: Long

Attribute place holder for the color red. See Color
System for more information.

Data Type: Long

The color to paint scroll bars. The default for this is
dark gray.

bwEV(0) .Scrollbarcolr = bwEV(0) .DarkGray

This property may be set in the EGULINI file with
Scrollbarcolr=8 (where 8 is the a color number
0-15).

Data Type: Long

Flag which indicates if the EGUI internal palette
configuration should be set on start up. By default
this flag is set to True (-1).

bwEV (0) .Setpaletteflag = -1

This property may be set in the EGULINI file with
Setpaletteflag=-1.

Data Type: Integer

10-10

Environment Properties

Statuscolr

Titlebarcolr

Titlebartextcolr

4™ ViewportHgt

The color to display pull down menu list items which
are disabled. The default for this is gray.

bwEV (0) . Statuscolr = bwEV(0).Gray

This property may be set in the EGULINI file with
Statuscolr=7 (where 7 is the a color number 0-15).

Data Type: Long

The background color of a dialog box title bar. The
default for this is blue.

bwEV (0) .Titlebarcolr = bwEV (0) .Blue
This property may be set in the EGULINI file with
Titlebarcolr=1 (where 12 is the a color number

0-15).

Data Type: Long

The foreground color of a dialog box title bar text.
The default for this is white.

bwEV (0) .Titlebarcolr = bwEV(0).White
This property may be set in the EGULINI file with
Titlebartextcolr=15 (where 15 is the a color number

0-135).

Data Type: Long

The current screen mode height. This information is
set by the system and is readable but should NOT be
reset.

Data Type: Integer

10 - 11

EllTech Development, Inc.

ViewportWid

Vportx1offset

Vporty1offset

White

Workspacecolr

The current screen mode width. This information is
set by the system and is readable but should NOT be
reset.

Data Type: Integer

The current screen mode horizontal offset. A
viewport offset is used when and application has
been designed to operate in the standard VGA
640x480 mode and is being used in a SuperVGA
(800x600, etc.) Mode. See Display Modes and
Viewports for more information. Note: This
property is NOT supported in the Standard Video
Driver Library.

Data Type: Integer

The current screen mode vertical offset. A viewport
offsct is used when and application has been
designed to operate in the standard VGA 640x480
mode and is being used in a SuperVGA (800x600,
etc.) Mode. See Display Modes and Viewports for
more information. Note: This property is NOT
supported in the Standard Video Driver Library.

Data Type: Integer
Attribute place holder for the color white. See Color
System for more information.

Data Type: Long

For future development currently not supported.

Data Type: Long

10-12

Environment Properties

Yellow Attribute place holder for the color yellow. See
Color System for more information.

Data Type: Long

10 -13

Control
Properties

Chapter 11

Control Properties

accelkey Property

Applies To

Description

Usage

Remarks

Data Type

gCommandButton% and gChkOptBox%.

Sets the key to be used as an accelerator key and the position
to underline the character. Note: See Chapter 9 Attaching
Code to Controls for more information about accelerator keys.

bwBT(0).accelkey = charrnum

Use this property to select a character to be used as an
accelerator key.

charrnum Integer value indicating the character
position to use as an accelerator key.

Example: The letter "x" will be underlined
and used as an accelerator key. The
property value should be set to 9, because
"x" is the ninth character in the string.

bwBT (0) .accelkey = 9
Text$ = "Check Box One*

Integer

11 -1

P

Control Properties

active Property

Applies To
Description
Usage

Remarks

Data Type

gChkOptBox%.
Sets or returns the current state of the control.
bwBT(0).active = setting%

Use this property to set or get the state of a Check Box or
Option Button control.

Note: Because Controls share property memory, this property
could change when the focus is moved to a different control.
So it is recommended that a Permanent Storage Variable be
created to hold this value after getting it.
See the example in Chapter 12 under gChkOptBox%
Control Function for more information.

setting % Integer value indicating the state of the
control.

True (-1) = Active
False (0) = Inactive

Integer

11-3

Control Properties

actsusflag Property

“™ AppliesTo gChkOptBox%.

Description Suspense control state toggling if active (True).

Usage bwBT(0).actsusflag = setting%

Remarks This property will suspend a Check Box or Option Bution
control from toggling to an Inactive state once the control is
set to an Active state. This is the default configuration for an
Option Button when placed in a Group by the EGUI
Generator, and is optional for a check box.
setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive
P)
Data Type Integer
_—

11 -5

Control Properties

addobj Property

Applies To

Description

Usage

Remarks

Data Type

gChkOptBox%, gComboBox%, gCommandButton%,
gEditBox%, gHorzScrollBar%, gVertScrollBar% and
gPullDownMenu%.

Adds a Control Object to the Object Manager List.

bwBT(0).addobj = setting%
(shown for Command Button)

Control Objects must be registered with the Object Manager
List prior to operation of the Control. This property is usually
set to False in the Dialog Box Property Section of the
DBFormat and to True in the Draw Dialog Box Section, this
will cause the control to be registered when the Dialog Box is
drawn. A Control may only be registered once per Dialog -
Box and subsequent calls to add the same Control will be
ignored. Note: The Control will be removed from the Object
Manager List when gRemoveDialogBox% is called.

setting% Integer value indicating the state of the flag.

True (-1) = Add Object
False (0) = Do Not Add Object

Integer

11-7

Control Properties

addobjflag Property

Applies To
Description
Usage

Remarks

Data Type

gObjManager%.
Passes action instructions to the Object Manager.
bwOL(0).addobjflag = setting%

The Object Manager controls all the object controls in the
EGUI System. To manipulate an object on the Object List,
you send the Object Manager action instructions which are
passed by this property.

setting % Integer value indicating which action to
perform on the Object List. See
gObjManager% Control Function in
Chapter 12 for a complete list of the
available actions.

Integer

1-9

Control Properties

aptr Property

- Applies To
Description
Usage
Remarks

" e
Data Type

—

See Also

gListBox%.

Sets and returns the index number of the currently selected
item in a list.

bwLB(0).aptr = setting%

Use this property to point to an item in a List Box list. When
the List box Control loses the focus it will return the index to
the currently selected item in this property. You may also
pole this information while the List Box has the focus by
setting the bwL.B(0).status property to True. See Chapter 9
Attaching Code to Controls for more information on using
the status property.

Note: Because Controls share property memory, this property
could change when the focus is moved to a different control.
So it is recommended that a Permanent Storage Variable be
created to hold this value after getting it.

See the example in Chapter 12 under gListBox% Control
Function for more information.

setting% Integer value indicating the index number
of the currently selected item in a list.

Note: If the bwLB(0).tagflag property is set to True this
property is invalid, and you must scan the list to get a list of
selected items.

Integer

tagflag, rptr and dptr

1-11

Control Properties

assignobj Property

"~ Applies To

Description

Usage

Remarks

Data Type

gCommandButton%.

Sets the object number to move the focus to after a button
click.

bwBT(0).assignobj = setting%

Use this property when you want the focus to move or return
to a different control after a button click.

setting% Integer value indicating the object number
to move the focus to.

Integer

11-13

Control Properties

autotab Property

Applies To gEditBox%.

Description Moves the focus to the next object in the Tab Order after the
last character is entered in an Edit Box Control.

Usage bwEC(0).autotab = setting%

Remarks Set this property to True (-1) when you want to move the
focus to the next object in the Tab Order. This is useful in a
application where data is being entered into several fields and
you want to let the application move the focus to the next field
after the user has enter all the information in the previous
field.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

Data Type Integer

11-15

y)

Control Properties

border Property

Applies To

Description

Usage

Remarks

Data Type

gCommandButton%, gComboBox%, gEditBox%,
gChkOptBox%.

Draws a border around all or a portion of a control.

bwEC(0).border = setting%
(shown as Edit Box)

Set this property to True (-1) when you want to draw a border
around a control. The border color is set by the environment
property bwEV(0).Outlinecolr.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

Integer

11-17

Control Properties

button Property

Applies To

Description

Usage

Remarks

Data Type

gChkOptBox%.

Configures the Check/Option Box Control to act like either a
Check Box or an Option Button.

bwBT(0).button = setting%

Because the Check and Option Button processes are so similar
the Check/Option Box Control performs a dual role as both a
Check Box and an Option Button. This property will
configure the control for the desired process.

Note: When using this control configured as an Option
Button there should only be one active button at a time in a
group. This process is not supported directly by the library
however it can be created. In fact when building forms in the
EGUI Generator the generator will produce the code needed
to do the grouping process and no further coding will be
needed. To understand this process, create different sets of
Option Button Group with the Form Generator and study the
code it produces.

setting% Integer value indicating the state of the flag,

0 = Check Box
1 = Option Button

Integer

11-19

Control Properties

buttontype Property

Applies To gCommandButton% and gChkOptBox%.
Description Sets the style of a Command Button or a Check Box.
Usage bwBT(0).buttontype = setting%

Remarks The style of a Command Button or Check Box is mostly a
matter of personal choice. Both controls continue to function
in the same manner with the only difference being the
appearance of the control. This feature could be used to
signify different selection methods or simply as a cosmetic
function. Note: This property has no effect on an Option
Button.

setting% Integer value indicating the style.

Command Button (2CommandButton%)

0 = Standard
1 = Sunken
2 = Raised

3 = MS Windows Type Button
Check Box (gChkOptButton%)

0 = Check Mark

1 = Sunken Box
2 = Raised Box
3 =Large X

Data Type Integer

11-21

Control Properties

charhgt Property

Applies To

Description

Usage

Remarks

Data Type

gListBox%.

Sets and returns the number of rows to display in a List Box
Control.

bwLB(0).charhgt = setting%

Use this property to set the number of rows for the List Box
Control to display. Also the character height in the EGUI
System currently only supports 8, 14 and 16 pixel high fonts.
When different fonts are selected, (with the sysfontnum
property), the List Box Control is resized so that the current
number of rows stays the same. You may wish to readjust the
number of rows to keep the control size approximately the
same. Important: All Controls Boundaries should stay inside
of the Dialog Box Border. Be sure NOT to set the number of
rows value to high, so that the List Box Control will be
drawn outside of the Dialog Box Border.

setting% Integer value indicating the number of rows
to display. Depending on the font selected,
if a Vertical Scroll Bar is being used try not
to set this value to low so that the scroll bar
may function properly. Minimum setting
for a system font number 0 is 3.

Integer

11-23

Control Properties

charwid Property

Applies To

Description

Usage

Remarks

Data Type

gListBox%.

Sets and returns the number of columns to display in a List
Box Control.

bwLB(0).charwid = setting%

Use this property to set the number of columns for the List
Box Control to display. Also the character width in the EGUI
System currently only supports 8 pixel wide fonts. Important:
All Controls Boundaries should stay inside of the Dialog Box
Border. Be sure NOT to set the number of columns value to
high, so that the List Box Control will be drawn outside of
the Dialog Box Border.

setting% Integer value indicating the number of
columns to display. If a Horizontal Scroll
Bar is being used try not to set this value to
low so that the scroll bar may function

properly.

Integer

11-25

Control Properties

clearflag Property

Applies To gListBox%.

Description Sets a flag indicating for the List Box Control NOT to clear
the highlighted item when losing the focus.

Usage bwLB(0).clearflag = setting%

Remarks Use this property when you wish to leave an item which has
been selected in a list box, highlighted when moving the focus
to another control.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

Data Type Integer

11-27

Control Properties

col Property

Applies To

Description

Usage

Remarks

See Also

Data Type

gComboBox% and gEditBox%.

Sets and returns the left most column position to place a
Control Object at.

bwEC(0).col = setting%

The Edit Box and Combo Box Controls use a mixed
coordinate system to place their location on the display.
Column is any value between 1 and 79, however it is usually
added to the Dialog Box Upper Left Corner Offset. Note that
the Dialog Box setting is in pixel values so there is a miner
conversion involved in setting the column value. Below is the
standard formula for setting this value.

setting% Integer value indicating the column to place
a control. Use the formula below to
calculate this value.

bwEC(0).col = ((x1%\8)+ 11)

x1% = the upper left x value of the Dialog
8 = the standard font width in pixels

11 = the number of columns to offset
inside of the Dialog Box to the right. This
number should be replaced with your
column number, any number between
(1-79).

Also note that Integer division (\) should be
used not floating point division (/).

row

Integer

11-29

Control Properties

combo Property

Applies To gComboBox%.

Description Sets a flag indicating the gComboBox% Control should
function like a Combo Box.

Usage bwEC(0).combo = setting%

Remarks There are two types of Combo Boxes available, a Combo Box
and a Drop Down Box. A Combo Box allows the user to type
an entry in the Combo Box or pick and item from the Drop
Down List. A Drop Down Box only allows the user to select
and item from the Drop Down List. One exception to this is
if the bwEC(0).noeditflag property is set to True no editing is
allowed in a Combo Box or a Drop Down Box.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

See Also dropdown, noeditflag

Data Type Integer

11-31

Control Properties

dblclkflag Property

Applies To gListBox%.

Description Sets a flag indicating that the gListBox% Control should
process a mouse double click when selecting an item from the

list.
Usage bwLB(0).dblclkflag = setting%
Remarks If this property is set to True (-1) then the List Box Control

will process a mouse double click when selecting an item
from the list. This is the same as selecting the item with the
keyboard and pressing the ENTER key.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

See Also mousewait (Environment Property)

Data Type Integer

11-33

EllTech Development, Inc.

11-34

Control Properties

dbxl1, dbyl, dbx2, dby2 Property

Applies To

Description

Usage

Remarks

See Also

Data Type

gBuildDialogBox%.

Sets the Upper Left and Lower Right corner coordinates in
pixels of a Dialog Box Control.

bwDB(0).dbx1 = setting%
bwDB(0).dbyl = setting%
bwDB(0).dbx2 = setting%
bwDB(0).dby2 = setting%

A Dialog Box Control is drawn to the display with the values
set in these properties. Important: The x values must be set
to an 8 pixel increment (i.e. 0, 8, 16, 32, etc.). The y values
may be set to any row number within the legal limits of the
selected Display Mode (i.e. Mode 12-640x480 allowable y
values are 0-479).

setting% Integer value indicating the pixel location to
draw a Dialog Box Control.

displaymode (Environment Property)

Integer

11 -35

EliTech Development, Inc.

11 -36

Control Properties

dcolr Property

Applies To

Description

Usage

Remarks

See Also

Data Type

BuildDialogBox%,gComboBox%,gCommandButton%,gEditB
0x%, gListBox%, gChkOptBox%.

Sets the drawing color of a Control's background.

bwDB(0).dcolr = setting&
(shown for Dialog Box)

If this property is set to zero (0) then the default control color
is used to draw the background of that control. This property
is used to override the default value with a custom value for
that specific control. Note: This property is set using a Multi
Color Value for a gChkOptBox% Control where the
foreground value is used to modify the color of the Option
Button Label and the background is used to modify the
background color of the Option Button. Important: All other
controls only use a Single Color Value for setting the
background of that control. See Color System in Chapter 3
for more information.

setting& Long Integer value indicating a Control's
background color.

dialogboxcolr (Environment Property)
controlcolr (Environment Property)

Long

11-37

Control Properties

defbutbox Property

Applies To

Description

Usage

Remarks

Data Type

gCommandButton%.

Sets a flag which indicates that the Command Button Control
should draw a Default Button Box around the button.

bwBT(0).defbutbox = setting%

A Default Button Box indicates to the user which command
button is active if the ENTER key is pressed. If this flag is
True (-1), when a command button gets the focus it will draw
a box around the edge of the button. When the button loses
the focus it will remove the box.

Important: If you are using a Default Button Box for one
button you should use it for all buttons on that dialog box.
Remember when a command button has the focus the ENTER
key will activate what ever process is attached to that button.
So the default box should move to the command button which
has the focus. When a control, other than a command button,
has the focus you should turn on the Default Button Box
around the button which is the default. To do this set up to
local processes. One to turn the default on and another to
turn it off. See the sample code EGUIINST.BAS in the
sample directories for and example on how to use this

property.

setting% Integer value indicating the state of the
property.

True (-1) = Active
False (0) = Inactive

Integer

11 -39

Control Properties

depress Property

Applies To
Description
Usage

Remarks

Data Type

gCommandButton%.
Sets and returns the mode of a Command Button.
bwBT(0).depress = setting%

Use this property to select the mode of a Command Button.
The two modes available for a Command Button are Up and
Down. This property should be used when you wish to use
Command Buttons in a PushOn-PushOff type configuration.,
much like is used on a Tool Bar. This action is not directly
supported in the library and requires some additional coding.
See Building a Tool Bar in Chapter 9 for more information.

setting % Integer value indicating the mode of the
control.

-1 = Control Up
-2 = Control Down

Integer

1-41

Control Properties

dlen Property

Applies To
Description
Usage

Remarks

See Also

Data Type

gComboBox% and gEditBox%.

Sets and returns the display length of a Control.
bwEC(0).dlen = setting%

Use this property to set the number of characters to display in
a control. For a Combo Box Control this only affects the Edit
Box portion of the control. Note that the Edit Box Control
may be scrolled left and right so it is not absolutely necessary

to set the display length to the actual string length.

setting % Integer value indicating the number of
characters to display.

slen

Integer

11-43

Control Properties

dptr Property

Applies To

Description

Usage

Remarks

See Also

Data Type

gComboBox%, gEditBox% and gListBox%.

Sets and returns an index to the left most character being
viewed in the control.

bwEC(0).dptr = setting%
(shown as Edit Box)

While scrolling left and right in a control, an index pointer is
maintained of the left most character being displayed. This
property may be used to manage this index.

Note: Because Controls share property memory, this property
could change when the focus is moved to a different control.
So it is recommended that a Permanent Storage Variable be
created to hold this value after getting it.

See the example in Chapter 12 under gEditBox% Control
Function for more information.

setting% Integer value indicating the index number.

eptr, aptr, rptr

Integer

11-45

Control Properties

dropdown Property

Applies To gComboBox%.

Description Sets a flag indicating the gComboBox% Control should
function like a Drop Down Box.

Usage bwEC(0).dropdown = setting%

Remarks There are to different types of Combo Boxes available, a
Combo Box and a Drop Down Box. A Combo Box allows the
user to type an entry in the Combo Box or pick and item from
the Drop Down List. A Drop Down Box only allows the user
to select and item from the Drop Down List. One exception is
if the bwEC(0).noeditflag property is set to True, then no
editing is allowed in a Combo Box or a Drop Down Box.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

See Also combo, noeditflag

Data Type Integer

11 - 47

Control Properties

editflag Property

Applies To gListBox%.

Description Sets a flag indicating the gListBox% Control should function
like a Multi Line Edit Box Control.

Usage bwLB(0).editflag = setting%

Remarks The Edit Box Control may only be used to edit a single line of
text. When set to True (-1), this property will combine the
Edit Box Control and List Box Control to make a Multi Line
Edit Box Control. This control will function much like a
normal text line editor and it has two editing features Insert
Line (Ctrl-L) and Delete Line (Ctri-D) .

setting % Integer value indicating the state of the flag,

True (-1) = Active
False (0) = Inactive

Data Type Integer

11 -49

Control Properties

elmwid Property

Applies To

Description

Usage

Remarks

See Also

Data Type

gListBox%.

Sets and returns the element width in characters for an item
in the List Box Control.

bwLB(0).elmwid = setting%

The List Box Control may be scrolled left and right. By
setting the elmwid property to a value higher then the
charwid property the list box will automatically allow left
and right scrolling. You may use the left and right arrow
keys or optionally add a Horizontal Scroll Bar for controlling
the scroll process.

setting% Integer value indicating the width in
characters of a List Box item.

Max = 255
Min=1

hsbflag, charwid

Integer

11 -561

Control Properties

enable Property

Applies To

Description

Usage

Remarks

See Also

Data Type

gPullDownMenu%, gCommandButton%, gEditBox%,
gListBox%, gComboBox%,gChkOptBox%.
gHorzScrollBar%,gVertScrollBar% and ObjManager%.

Sets a flag which indicates if a Control Object is enabled or
disabled.

bwLB(0).enable = setting%
(shown as List Box)

A Control Object may be Enabled or Disabled after it has
been registered with the Object Manager. When a Control is
Enabled it will function normally. If a Control is Disabled it
will ignore any messages or events that are sent to it. An
exception to this rule is that a Dialog Box and Pull Down
Menu Control are always enabled, so this property setting is
ignored. Also the Object Manager uses this property to
indicate when first adding an Object to the Object List if it
should be enable or disabled.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

paintobj, addobj, objidnum

Integer

11 -53

Control Propertiecs

eptr Property

PN
Applies To
Description
Usage
Remarks
PN
See Also

o DataType

gComboBox% and gEditBox%.

Sets and returns an index to the current cursor position in a
control.

bwEC(0).eptr = setting%

While editing text in and Edit Box an index pointer to the
current cursor position is maintained. This index will be
return in this property.

Note: Because Controls share property memory, this property
could change when the focus is moved to a different control.
So it is recommended that a Permanent Storage Variable be
created to hold this value after getting it.

See the example in Chapter 12 under gEditBox% Control
Function for more information.

setting % Integer value indicating the index number
of current cursor position.

dptr

Integer

11 - 565

EllTech Development, Inc.

11 -56

Control Properties

format Property

Applies To

|
Description

Usage

Remarks

Data Type

gComboBox% and gEditBox%.

Sets a value indicating that a predefined format should be
used with this control.

bwEC(0).format = setting%

There are 5 predefined entry formats that may be selected to
be used with the Edit Box Control. These formats will mask
the entry input in the control and only allow specific
characters to be enter.

setting% Integer value indicating which format to
use.

1 = Social Security Number

2 = Extended Zip Code

3 = Phone Number

4 = Area Code & Phone Number
5=Date

Note: There is currently no support for a User Defined
Format.

Integer

11 - 57

EllTech Development, Inc.

11-58

Control Properties

frame Property

Applies To gHorzScrollBar% and gVertScrollBar%.

Description Sets and returns the value of a scroll bar frame.

Usage bwSB(0).frame = setting!

Remarks A Scroll Bar frame property is used to set the aspect ratio of a
Scroll Bar. This property should usually be set to the same

value as the largechange property.

setting! Single Integer value indicating the aspect
ratio of a scroll bar.

See Also largechange, smallchange, min, max

Data Type Single

11-59

Control Properties

headercolr Property

Applies To gListBox%.

Description Sets the color of the Header Text in a List Box Control.

Usage bwLB(0).headercolr = setting&

Remarks This is a Muiti Color Value used to set the color of the List
Box Header Text. See Color System in Chapter 3 for more
information.
setting & Long Integer value indicating the color of

the header text.

See Also headerflag, headerfont

Data Type Long

11-61

Control Properties

headerflag Property

Applies To gListBox%.

Description Sets a flag indicating if a List Box Header is to be drawn.

Usage bwLB(0).headerflag = setting%

Remarks If you wish to display a Header Row on top of a List Box set
this property to True (-1). See gListBox% Control Function
in Chapter 12 for information on the Header Text.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

See Also headercolr, headerfont

Data Type Integer

11-63

Control Properties

headerfont Property

Applies To

Description

Usage

Remarks

See Also

Data Type

gListBox%.

Sets a value indicating which font number to use when

displaying a List Box Header.

bwLB(0).headerfont = setting%

If you are displaying a List Box Header you may select a
different font than the one used to display List Box Items.
Use this property to select one of the following fonts.

setting% Integer value indicating which font number

to use.

0=8x16 'Bold

1 =8x14 'Bold

2=8x14 'Normal

3=8x14 ‘'ltalic

4=8x8 'Bold

5=38x8 'Normal

6 =8x8 'Italic

headercolr, headerflag

Integer

11-65

Control Properties

hlinecolr Property

Applies To
Description
Usage

Remarks

See Also

Data Type

gComboBox% and gListBox%.

Sets the color of the List Box Control Divider Lines.
bwLB(0).hlinecolr = setting&

This is a Single Color Value used to set the color of the List
Box Divider Lines. See Color System in Chapter 3 for more
information. Note: The lines first must be turned on using

hlineflag.

setting& Long Integer value indicating the color of
the divider lines.

hlineflag

Long

11 - 67

Control Properties

hlineflag Property

Applies To gComboBox% and gListBox%.

Description Sets a flag indicating that the Divider Lines should be turned
on in the List Box Control.

Usage bwLB(0).hlineflag = setting%
Remarks When this property is set to True (-1) the List Box Divider
Lines will be drawn below each item row in the list and a

shadowed box will be drawn around this information.

Note: If the bwLB(0).editflag property is set to True this
property is ignored.

setting % Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

See Also hiinecolr

Data Type Integer

11-69

Control Properties

hpagesz Property

~ Applies To

Description

Usage

Remarks

See Also

Data Type

gComboBox% and gListBox%.

Sets the horizontal page movement size of the List Box
Control.

bwLB(0).hpagesz = setting%

This feature is similar to the largechange property with a
Horizontal Scroll Bar. It sets the aspect distance the page
should scroll left and right when the Scroll Bar is clicked.
This property should normally be set to the value 1.

Important: Make sure that a Permanent Variable is setup
for saving and restoring the bwLB(0).dptr property before
doing horizontal scrolling.

setting% Integer value indicating the horizontal move
distance.

dptr

Integer

11-71

Control Properties

hsbflag Property

Applies To gComboBox% and gListBox%.

Description Sets a flag indicating that a Horizontal Scroll Bar should be
displayed in a List Box Control.

Usage bwLB(0).hsbflag = setting%

Remarks This property will turn a Horizontal Scroll Bar on for a List
Box Control. Note that the items in the list must extend past
the left edge of the list box to produce horizontal scrolling.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

Data Type Integer

11-73

Control Properties

icon Property

Applies To

Description

Usage

Remarks

See Also

Data Type

gCommandButton%.

A flag indicating that an EGUI Icon File should be loaded
and displayed on a Command Button.

bwBT(0).icon = setting%

This property when set to True (-1) tells the Command Button
Control to load and display the EGUI Icon which is listed in
the bwBT(0).iconfile property. If the Icon File cannot be
located or it is and invalid file format, this property will be
ignored.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

iconfile, iconx1off, icony1off

Integer

1-75

Control Properties

iconfile Property

-_—]
Applies To
Description
Usage
Remarks

A
See Also

y)

Data Type

gCommandButton%.

Sets an EGUI Icon File Name to be loaded and displayed on a
Command Button.

bwBT(0).iconfile = setting$

When the bwBT(0).icon property is set to True (-1) , the Icon
File Name set in this property will be loaded. You may
optional set a drive and directory. The EGUI System Variable
IconPaths$ is set at application startup time to the location of
the system Icon Files. It is recommended that all Icon Files
be stored in this location for better management of Icons.
Below is and example on how to use the system path
information.

setting$ String value indicating the Icon File to load.

Optional drive and directory is permitted.

System Path Example:
bwBT(0) .iconfile = IconPath$+*\MYICON.ICN*

icon, iconx1off, iconyloff

String

11-77

Control Properties

iconx1off & iconyloff Property

- Applies To

Description

Usage

Remarks

See Also

- Data Type

gCommandButton%.
Sets a Command Button Icon x,y offset.

bwBT(0).iconx1off = setting%
bwBT(0).iconyloff = setting%

When the bwBT(0).icon property is set to True (-1) , an Icon
File is loaded and displayed on the Command Button. The
Icon x,y offset is the offset distance in pixels from the upper
left corner of the Command Button. The default offset for
both x & y is 5, however you may adjust this offset so that an
icon may be placed any where on the button. Note: the Load
routine does not clip the icon, so be careful not to make the
offset so high that the icon is displayed outside of the
Command Button Border.

setting % Integer value indicating the offset distance
in pixels to place the icon at.

icon, iconfile

Integer

11-79

Control Properties

intflag Property

Applies To gListBox%.

Description Sets and returns the List Box Control's Initialization Mode

values.
Usage bwBT(0).intflag = setting%
Remarks The List Box Mode Initialization flag is used to help control

different configurations of the List Box Control, such as a
Paint or Update Event and when it Gets and Loses the Focus.
Note that this property changes return codes for different

configurations.

setting% Integer value indicating the which mode to
select.

Passed To:

-256 = Standard Initialization with List Box
Prompt. The List Box Prompt is a dotted
line around the inside of the List Box
Control Area. When a prompt is displayed
no item has been selected yet. Press the
DOWN ARROW key to move past the
prompt.

-255 = Bypass the List Box Prompt and select the
item that is indexed in the bwLB(0).aptr
property.

-254 = Highlight the list Item that is indexed in the
bwLB(0).aptr property on an update
process. This mode is ONLY available on a
update process.

Returned From:

-2 = On a Mouse Click outside of the List Box
Control Area.

11 - 81

EllTech Development, Inc.

1

-3 On a Paint, Update or Add Object Event.

-4 = On a Status Event,

Data Type Integer

11 - 82

Control Properties

largechange Property

Applies To

Description

Usage

Remarks

Data Type

gHorzScrollBar% and gVertScrollBar%.

Determines the amount of change to report in a scroll bar
control when the user clicks on the scroll bar. The value
property increases or decreases by this amount.

bwSB(0).largechange = setting!

The amount may be any value between 1 and 32,767 but
should be no larger than the difference between min and max
properties. See gHorzScrollBar% in Chapter 12 for more

information.

setting! Single Integer value indicating the change
amount.

Single

11-83

Control Propertics

logicflag Property
Applies To gCommandButton%.
i
Description Determines if a Command Button has a Logical Operator

Usage

Remarks

Data Type

applied during the Down Event.

bwBT(0).logicflag = setting%

This value may be between 0 and 4 and selects a Logical
Operation to be applied to the Command Button Control
when it is being depressed.

setting%

Integer

Integer value indicating the Logical
Operation.

0=PSET

1 = PRESET
2=AND
3=0R
4=XOR

Note: The XOR operation is usually used
on a Tool Bar to enhance the depressed
appearance.

11 -85

Control Properties

max Property

Applies To gHorzScrollBar% and gVertScrollBar.

Description Determines the scroll bar's maximum position value.

Usage bwSB(0).max = setting%

Remarks This value may be between -32,768 and 32,767. The default
value is 100, The scroll bar button is at the maximum value
when it is at the bottom of a vertical scroll bar and the right

most side of the horizontal scroll bar.

setting% Integer value indicating the maximum
position of a Scroll Bar Control.

Data Type Integer

11 - 87

V)

Control Properties

menucolr Property

Applies To
Description
Usage

Remarks

Data Type

gPullDownMenu%.

Determines the background color of a Pull Down Menu.
bwPD(0).menucolr = setting&

This is a Single Color Value which is used to paint the menu
bar and pull down list background. See Color System in

Chapter 3 for more information.

setting& Long Integer value indicating the control
background color.

Long

11 -89

A

Control Properties

menutextcolr Property

Applies To
Description
Usage

Remarks

Data Type

gPullDownMenu%.

Determines the foreground color of a Pull Down Menu.
bwPD(0).menutextcolr = setting&

This is a Single Color Value which is used to paint the menu
bar and pull down list foreground (Characters). See Color

System in Chapter 3 for more information.

setting& Long Integer value indicating the control
foreground color.

Long

11-91

Control Properties

menx1, menyl, menx2, meny2 Property

Applies To gPullDownMenu%.

Description Determines the upper left and lower right corners of the Pull
Down Menu Bar.

Usage bwPD(0).menx1 = setting%
bwPD(0).menyl = setting%
bwPD(0).menx2 = setting%
bwPD(0).meny2 = setting%

Remarks These coordinates set the location of a menu bar on a dialog
box. To determine the correct values for these properties use
the information in the example code. Note: These properties
are not available in the EGUI Generator only the Library.

setting% Integer value indicating the location of the
pull down menu bar in pixels.

Data Type Integer

(see next page for example)

11-93

ElliTech Development, Inc.

The following example shows how to determine the correct pull down menu
coordinates. Note this code is built automatically in the EGUI Generator at
Function Build Time.

Example

(bwDB(O).dbx1+waV(0).Borderwid)
(bwDB(O).dby1+bwTitleBangt%+waV(0).Borderwid)
(bwDB (0) .dbx2 - bwEV (0) .Borderwid)

-1

bwPD(0) .menx1
bwPD{(0) .menyl
bwPD(0) .menx2
bwPD (0) .meny2

11 -94

Control Properties

min Property

Applies To gHorzScrollBar% and gVertScrollBar%.

Description Determines the scroll bar's minimum position value.

Usage bwSB(0).max = setting%

Remarks This value may be between -32,768 and 32,767. The default
value is 0. The scroll bar button is at the minimum value
when it is at the top of a vertical scroll bar and the left most

side of the horizontal scroll bar.

setting% Integer value indicating the minimum
position of a Scroll Bar Control.

Data Type Integer

11-95

Control Properties

movetoflag Property

Applies To gComboBox% and gListBox%.

Description Sets a flag to indicate that a List Box Control will move to the
next item in the list which starts with the character pressed.

Usage bwLB(0).movetoflag = setting%

Remarks This property when set to True (-1), will cause the List Box
Control to move to the next item in the list that starts with the
character that was pressed by the user. If no item on the list
starts with that character the request is ignored. After the last
item in the list is reached the process loops back to the top.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

Data Type Integer

11 -97

Control Properties

noborderflag Property

Applies To gListBox%.

Description Sets a flag to indicate that a List Box Control will be

displayed with no border.
Usage bwLB(0).noborderflag = setting%
Remarks This property when set to True (-1), will cause the List Box

Control not to display a border. By default a List Box
Control always has a border.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

Data Type Integer

11-99

Control Properties

noeditflag Property

Applies To gComboBox% and gEditBox%.

Description Sets a flag to indicate that a Edit Box Control will NOT allow
editing, display only.

Usage bwEC(0).noeditflag = setting%

Remarks This property when set to True (-1), will cause the Edit Box
Control not to allow editing of it's text. This is a display only
mode for the edit box. Note that scrolling events are still
enabled even though you may not edit the text.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

Data Type Integer

11 -101

Control Properties

nonborderflag Property

Applies To

Description

Usage

Remarks

Data Type

gBuildDialogBox%.

Sets a flag to indicate that a Dialog Box Control will be
displayed with a thin border.

bwDB(0).nonborderflag = setting%

This property when set to True (-1), will cause the Dialog Box
Control to be displayed with a thin border. By default a
Dialog Box Control always has a wide border. The border
around a dialog box is used to indicate types of dialog boxes.
In future development the wide border around a dialog box
will be used to locate size handles. A thin border will be a
non-sizeable box. See Window Types under Chapter 8 for
more information.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

Integer

11-103

Control Properties

noncloseflag Property

~ Applies To

Description

Usage

Remarks

Data Type

gBuildDialogBox%.

Sets a flag to indicate that a Dialog Box Control will be
displayed without a Close Button.

bwDB(0).noncloseflag = setting%

This property when set to True (-1), will cause the Dialog Box
Control to be displayed without a Close Button. The Close
Button is used to remove the dialog box from the screen when
the user is finished using it. During development time this is
the only method for removing a dialog box until code is
attached to some other event which allows you to close the
box. Thus it is recommended that a Close Button always exist
unless you are sure you will not need it.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

Integer

11 -105

Control Properties

nonmoveflag Property

Applies To

Description

Usage

Remarks

Data Type

gBuildDialogBox%.

Sets a flag to indicate that a Dialog Box Control will not be
movable.

bwDB(0).nonmoveflag = setting%

This property when set to True (-1), will cause the Dialog Box
Control to be a non-movable window. By default a Dialog
Box Control is a movable window. When a Dialog Box is a
movable window it will have a border around the Title Bar.
A non-movable window does not have a border. To move a
Movable Window place the mouse cursor inside the Title Bar
Box and press the left mouse button. While holding the left
mouse button down reposition the box where you wish and
release the button.

setting % Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

Integer

11-107

Control Properties

novsbflag Property
P . . o
: Applies To gComboBox% and gListBox%.

Description Sets a flag to indicate that a List Box Control will not display
a vertical scroll bar.

Usage bwLB(0).novsbflag = setting%

Remarks This property when set to True (-1), will cause the List Box
Control to be displayed without a vertical scroll bar. By
default a List Box has a vertical scroll bar.
setting % Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive
PN
Data Type Integer
-

11 -109

Control Properties

num2disp Property

Applies To

Description

Usage

Remarks

Data Type

gComboBox%.

Sets and returns the number of rows to display in a Combo
Box Control.

bwEC(0).num2disp = setting%

Use this property to set the number of rows for the Combo
Box Control to display. Also the character height in the
EGUI System currently only supports 8, 14 and 16 pixel high
fonts. When different fonts are selected, (with the
sysfontnum property), the Combo Box Control is resized so
that the current number of rows stays the same. You may
wish to readjust the number of rows to keep the control size
approximately the same.

setting% Integer value indicating the number of rows
to display. Depending on the font selected,
if a Vertical Scroll Bar is being used, do not
set this value to low as the scroll bar may
not function properly. Minimum setting for
a system font number 0 is 3.

Integer

11 -111

Control Properties

numflag Property

- Applies To

Description

Usage

Remarks

Data Type

gComboBox% and gEditBox%.

Sets a flag which indicates that an Edit Box Control will only
accept numeric values.

bwEC(0).numflag = setting%

Set this property to True (-1) to make the Edit Box Control
only allow the entry of numeric characters. When this
property is False alphanumeric characters are allowed.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

Integer

11-113

Control Properties

objheight Property

Applies To

Description

Usage

Remarks

Data Type

gCommandButton%, gHorzScrollBar% and
gVertScroliBar%. ‘

Sets and returns the height of a Control Object.

bwBT(0).objheight = setting%
(shown as Command Button)

This value is set in the EGUI Generator at design time,
however it may be readjusted in code as needed. This is a
pixel value which determines the physical height of the
Control. Note: The height of a Horizontal Scroll Bar is fixed
by the system and is not adjustable.

setting % Integer value indicating the height of the
Control Object in pixels.

Integer

11-115

Control Properties

objid Property

Applies To

Description

Usage

Remarks

Data Type

gBuildDialogBox%, gPullDownMenu%,
gCommandButton%, gEditBox%, gListBox%,
gChkOptBox%, gHorzScrollBar% and gVertScrollBar%,

Sets a flag which indicates that a Control Object should show
its active control object indicator when it gets the focus.

bwLB(0).0bjid = setting%
(shown as List Box)

If this flag is set to True (-1) then the Control Object will
display it's active object indicator when it gets the focus. If
the flag is False (0) then no indicator will be shown. An
active control object indicator can be an insertion point, a
highlight or a dotted line.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

Integer

11 -117

Control Properties

objidnum Property

Applies To

Description

Usage

Remarks

Data Type

gBuildDialogBox%, gPullDownMenu%,
gCommandBution%, gEditBox%, gListBox%,
gChkOptBox%, gHorzScrollBar%, gVertScrollBar% and
gObjManager%.

Returns and sets the Active Control Object ID Number.
(The Object Handle).

bwLB(0).objidnum = setting%
(shown as List Box)

The Object Manager assigns each Control Object a unique
object handle at the time it is registered. This handle, also
called the Control Object ID Number, is used to perform
different tasks on specific Controls. Note that most
procedures in the EGUI system do not require this
information.

Note: Because Controls share property memory, this property
could change when the focus is moved to a different control.
So it is recommended that a Permanent Storage Variable be
created to hold this value after getting it.

The best time to get this information is immediately after a
Control has been registered (added to the object list).

setting% Integer value indicating the handie or
Control Object ID Number of the current
object.

Integer

11 -119

Control Properties

objwidth Property

Applies To gCommandButton%.gHorzScroliBar% and gVertScrollBar%.
Description Sets and returns the width of a Control Object.

Usage bwBT(0).objwidth = setting%
(shown as Command Button)

Remarks This value is set in the EGUI Generator at design time,
however it may be readjusted in code as needed. This is a
pixel value which determines the physical width of the
Control. Note: The width of a Vertical Scroll Bar is fixed by
the system and is not adjustable.

setting% Integer value indicating the width of the
Control Object in pixels.

Data Type Integer

11-121

Control Properties

objx1, objyl, objx2, objy2 Property

Applies To

Description

Usage

Remarks

Data Type

gObjManager%e.

Determines the upper left and lower right corners of a Control
Object.

bwOL(0).0bjx1 = setting%
bwOL(0).0bjyl = setting%
bwOL{(0).0bjx2 = setting%
bwOL(0).0bjy2 = setting%

These coordinates set the location of a Control Object's
Boundary at the time it is registered with the Object Manager.
The upper left corner is represented by objx1,0bjy1 and the
lower right corner is represented by objx2,0bjy2. The EGUI
System Control Objects take care of this process. The only
time you will need to perform this process is when you are
creating a Custom Control. See Custom Controls in
Appendix B for more information.

setting% Integer value indicating the location of the
Control Object's Boundary in pixels.

Integer

11-123

Control Properties

oiflag Property

Applies To gComboBox% and gEditBox%.

Description Sets a flag to indicate that a Edit Box Control should be in
Overstrike or Insert Mode.

Usage bwEC(0).0iflag = setting%

Remarks This property when set to True (-1), will cause the Edit Box
Control to be in Insert Mode. If set to False (0) it will be in
Overstrike Mode.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

Data Type Integer

11-125

Control Preperties

paintobj Property

A .
Applies To
Description
Usage
Remarks

_

See Also

4~ Data Type

gBuildDialogBox%, gPullDownMenu%,
gCommandButton%, gEditBox%, gListBox%,
gChkOptBox%, gHorzScrollBar%, gVertScrollBar%.

Sets a flag which indicates that a Control Object should
perform a paint event.

bwLB(0).paintobj = setting%
(shown as List Box)

When this property is set to True (-1) a Control Object
performs a paint event, which draws the control to the
display. This event usually happens when a Control Object is
registered. Note that it is usually not necessary to have a
paint event when an update event is requested. An update
event differs from a paint event in that the paint event will
paint the entire control (i.e. its border, scroll bars, etc.) and an
update event will only paint the action of the control. For
example an update of a List Box will only paint the items in
the list and not the border or scroll bars.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

addobj, objidnum, update

Integer

11-127

Control Properties

rate Property

Applies To gComboBox% and gEditBox%.

Description Sets and returns the Edit Box cursor blink rate value.

Usage bwEC(0).rate = setting%

Remarks Use this property to set the rate of speed you wish the Edit
Box cursor to blink at. This may be any value between 1 and
15, the default value is 4. Note if rate is set to 0 the cursor

will stop blinking.

setting% Integer value indicating the cursor blink
rate.

Data Type Integer

11-129

Control Properties

reobjx1, reobjyl, reobjx2, reobjy2 Property

PN
" Applies To
Description
Usage
Remarks
A
Data Type
-

gObjManager%.

Determines new upper left and lower right corner coordinates
for an existing Control Object's Boundary.

bwOL(0).reobjx1 = setting%
bwOL(0).reobjyl = setting%
bwOL(0).reobjx2 = setting%
bwOL(0).reobjy2 = setting%

These properties are used to reposition a Control Object
original boundary coordinates when repositioning the
Control. See Custom Controls in Appendix B for more
information.

setting% Integer value indicating the new location of
the Control Object's Boundary in pixels.

Integer

11 -131

Control Properties

row Property

Applies To gComboBox% and gEditBox%.
Description Sets and returns the row position to place a Control Object.
Usage bwEC(0).row = setting%

Remarks The Edit Box and Combo Box Controls use a mixed
coordinate system to place their location on the display. Row
is any value between (0-479) for Display Mode 12 and
(0-349) for Display Mode 9, however it is usually added to the
Dialog Box Upper Left Comner Y Offset. Below is the
standard formula for setting this value.

setting% Integer value indicating the row to place a
control. Use the formula below to calculate
this value.
bwEC(0).row = (y1% + 34)
y1% = the upper left y value of the Dialog

34 = the number of rows to offset inside
of the Dialog Box down

See Also col

Data Type Integer

11-133

Control Properties

rptr Property

A—

‘ Applies To
Description
Usage
Remarks

—_—
See Also

4= Data Type

gListBox%.

Sets and returns the index number of the currently selected
item's row in a list.

bwLB(0).rptr = setting%

Use this property in combination with the bwLB(0).aptr
property to point to an item in a List Box list. When the List
box Control loses the focus it will return the index to the
currently selected item's row in this property. You may also
pole this information while the List Box has the focus by
setting the bwLB(0).status property to True. See Chapter 9
Attaching Code to Controls for more information on using
the status property.

Note: Because Controls share property memory, this property
could change when the focus is moved to a different control.
So it is recommended that a Permanent Storage Variable be
created to hold this value after getting it.

See the example in Chapter 12 under gListBox% Control
Function for more information.

setting% Integer value indicating the index number
of the currently selected item's row in a list.

aptr, dptr

Integer

11-135

Control Properties

shadowflag Property

Applies To gPullDownMenu%,gComboBox%,gEditBox%, gListBox%,
gChkOptBox%.

Description Sets a flag which indicates that a shadow will be drawn
around the Control.

Usage bwEC(0).shadowflag = setting% (shown for Edit Box)

Remarks If this property is set to True (-1), when the Control gets a
paint event it will draw a shadow around the edge of the
control. The actual shadow appearance may vary between
controls.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

Data Type Integer

11 -137

Control Properties

slen Property

Applies To

Description

Usage

Remarks

See Also

Data Type

gComboBox% and gEditBox%.

Sets and returns the actual string length of the text in an Edit
Box Control. This length may be longer that the display
length (dlen).

bwEC(0).slen = setting%

Use this property to set the actual number of characters that
the Edit Box Control will allow to be edited. For a Combo
Box Control this only effects the Edit Box portion of the
control. Note that the Edit Box Control may be scrolled left
and right so it is not absolutely necessary to set the display
length to the actual string length, but the string length should
always be as long or longer than the display length.

setting% Integer value indicating the actual text
string length being edited. Maximum of
255 characters.

dlen

Integer

11-139

Control Properties

smallchange Property

Applies To

Description

Usage

Remarks

Data Type

gHorzScrollBar% and gVertScrollBar%.

Determines the amount of change to report in a scroll bar
control when the user clicks on a scroll button. The value
property increases or decreases by this amount.

bwSB(0).smallchange = setting!

The amount may be any value between 1 and 32,767 but
should be no larger than the difference between min and max
properties and should be smaller than the largechange
property. See gHorzScrollBar% in Chapter 12 for more
information.

setting! Single Integer value indicating the change
amount.

Single

11 -141

Control Properties

sortflag Property

Applies To gComboBox% and gListBox%.

Description Sets a flag indicating the gListBox% Control should sort the
list prior to a paint or update event.

Usage bwLB(0).sortflag = setting%

Remarks This property when set to True (-1) will cause the List Box
Control to sort it's list in ascending order prior to a paint or
update event.
setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

Data Type Integer

11 -143

Control Properties

status Property

Applies To
I

Description
Usage

Remarks

Data Type

gBuildDialogBox%, gPullDownMenu%,
gCommandButton%, gEditBox%, gListBox%,
gChkOptBox%.

Sets a flag which indicates that a Control Object should report
it's current status while it has the focus.

bwLB(0).status = setting%
(shown as List Box)

A Control Object usually reports its status when it loses focus.
When this flag is set to True you may trap the status of the
Control as it is processing. For more information on using
the status property see Attaching Code to Control
Chapter 9.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

Integer

11 - 145

Control Properties

sysfontnum Property

Applies To

Description

Usage

Remarks

Data Type

gBuildDialogBox%,
gPullDownMenu%,gComboBox%,gEditBox%,
gCommandButton%, gListBox%, gChkOptBox%.

Sets a flag which indicates which System Font Number
should be used with the Control.

bwLB(0).sysfontnum = setting%
(shown as List Box)

A Control Object which displays fonts may use any of the
available system fonts. This property will set the value of the
font number to be used.

setting% Integer value indicating the font number to
use. Valid values are 0 through 6.

0=8x16 'Bold
1=8x14 'Bold
2 =8x14 'Normal
3=8x14 'Ntalic
4 =8x8 'Bold
5=28x8 ‘Normal
6 = 8x8 'Italic

Integer

11 - 147

Control Properties

tabflag Property

Applies To

Description

Usage

Remarks

See Also

Data Type

gPullDownMenu%, gCommandButton%, gEditBox%,
gListBox%, gComboBox%,gChkOptBox%,
gHorzScrollBar%,gVertScrollBar% and ObjManager%.

Sets a flag which indicates if a Control Object's tab event is
enabled or disabled.

bwLB(0).tabflag = setting%
(shown as List Box)

To move focus between Control Object with the keyboard you
press the TAB key or SHIFT-TAB key. This event can be
enabled and disabled by this property flag. Set the property to
True (-1) to enable tabbing and faise to disable tabbing.

setting % Integer value indicating the state of the flag.

True (-1) = Enabled
False (0) = Disabled

paintobj, addobj, objidnum, enable

Integer

11 -149

Control Properties

tagflag Property

Applies To

Description

Usage

Remarks

Data Type

gListBox%.

Sets a flag indicating the List Box Control should allow the
tagging of multiple items.

bwLB(0).tagflag = setting%

This property when set to True (-1) will cause the List Box
Control to allow the tagging of multiple items. To tag and
items either click on it with the left mouse button or use the
select key (SPACE BAR). When an item is tagged a check
mark will be placed in the item element at the last character
position. To get the tagged items simply scan the element
array for this character. The selection process functions like a
toggle, so to unselect an item either click the mouse button
again or press the select key again.

setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

Integer

11 -151

Control Properties

title Property

Applies To gBuildDialogBox%.

Description Sets the Title of a Dialog Box.

Usage bwDB(0).title = setting$

Remarks This property sets the Title of a Dialog Box. It may be a
maximum of 60 characters, however make sure that the title
will fit in the Dialog Box Title Bar or it may be displayed
outside of the box. The Title is centered between the x1 and

x2 dialog box borders by defauit.

setting$ String value indicating the dialog box title.
Maximum of 60 characters.

Data Type String

11 -153

Control Properties

titlebaroffset Property

Applies To gBuildDialogBox%.

Description Sets the Dialog Box Title Bar title offset.
Usage bwDB(0).titlebaroffset = setting%

Remarks The Title Text in a Dialog Box Title Bar may be placed any
where in the bar. To offset the title from the left edge of the
title bar set the offset value, in pixels, in this property. By
default this property is set to zero (0), this will cause the title
text to be centered in the title bar. Note: Be careful not to set
the offset value to high or the title text will be displayed
outside of the dialog box.

setting % Integer value indicating the dialog box title
bar offset in pixels.

Data Type Integer

11 - 155

Control Properties

ulcase Property

Applies To gComboBox% and gEditBox%.

Description Sets a flag which indicates that an Edit Box Control will
convert it's entry to upper case.

Usage bwEC(0).ulcase = setting%

Remarks Set this property to True (-1) to make the Edit Box Control
convert it's entry to upper case. By default this flag is set to
False (0).
setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

Data Type Integer

11 -157

Control Properties

update Property

Applies To

Description

Usage

Remarks

See Also

Data Type

gBuildDialogBox%, gPullDownMenu%,
gCommandButton%, gEditBox%, gListBox%,
gChkOptBox%, gHorzScrollBar%, gVertScrollBar% and
gComboBox%.

Sets a flag which indicates that a Control Object should
perform an update event.

bwLB(0).update = setting%
(shown as List Box)

When this property is set to True (-1) a Control Object
performs an update event, which draws the control's action to
the display. This event usually happens when a Control
Object is registered. Note that it is usually not necessary to
have a paint event when an update event is requested. An
update event differs from a paint event in that the paint event
will paint the entire control (i.e. its border, scroll bars, etc.)
and an update event will only paint the action of the control.
For example an update of a List Box will only paint the items
in the list and not the border or scroll bars.

setting % Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

addobj, objidnum, paintobj

Integer

11 -159

Control Properties

value Property

Applies To
Description
Usage

Remarks

See Also

Data Type

gHorzScrollBar% and gVertScrollBar%.

Sets and returns the current state of the control.
bwSB(0).value = setting!

The value determines the current position of the scroll bar

button, which is always an amount between the min and max
property values,

setting! Single Integer value indicating the position
of the scroll bar button.

min, max, smallchange, largechange

Single

11 -161

Control Properties

wsddflag Property

Applies To gBuildDialogBox%.

Description Sets a flag which indicates that the Dialog Box background
will be displayed as a 3d bar.

Usage bwDB(0).ws3dflag = setting%

Remarks Set this property to True (-1) to have the Dialog Box
background displayed as a 3d bar. The background color is
also forced to the color gray. By default this property flag is
set to False (0).
setting% Integer value indicating the state of the flag.

True (-1) = Active
False (0) = Inactive

Data Type Integer

11 -163

Control Properties

x1 Property

Applies To

Description

Usage

Remarks

See Also

Data Type

gCommandButton%, gChkOptBox%,gHorzScrollBar%,
gVertScrollBar% and gListBox%.

Sets and returns the x position of the upper left corner of a
control.

bwLB(0).x1 = setting%
(shown as List Box)

This property will set the x value of the upper left corner of a
control. The value is set in pixels and should be offset from

the upper left corner of the dialog box it resides in.

setting % Integer value indicating the x location of the
upper left corner of the control in pixels.

yl

Integer

11 - 165

Control Properties

yl Property

Applies To gCommandButton%, gChkOptBox%,gHorzScrollBar%,
gVertScrollBar% and gListBox%.

Description Sets and returns the y position of the upper left corner of a
control.

Usage bwLB(0).yl = setting%
(shown as List Box)

Remarks This property will set the y value of the upper left corner of a
control. The value is set in pixels and should be offset from
the upper left corner of the dialog box it resides in.

setting% Integer value indicating the y location of the
upper left corner of the control in pixels.

See Also x1

Data Type Integer

11 -167

A,

Control Properties

Unsupported Property

arraysz
dbfileflag
fileflag
hibreak
justify *
keypress
listfile
lobreak
mb
menulinehgt *
menustatuscolr
mstatus *
mx

my
nontitleflag
numofrecs
parxl
paryl
parx2
pary2
recstart
reservel
sizeflag
titlebarwid

The following properties are listed in the EGUI include files but are NOT
supported in this version of the EGUI Library.

* These items are supported but are for internal system use only.

11 -169

Control
Functions

- Chapter 12
—_—napier 1z

Control Functions

gBuildDialogBox% Control Function

This procedure builds a Dialog Box Window for placing other Controls on.
You should use this procedure when you wish to build a Dialog Box. There
are several procedures which are required to build a Dialog Box frame, this
procure will greatly ease this process. Important: this procedure must be
called prior to painting any other controls. See Window Types for more
information on Dialog Box Windows. Below is a typical Dialog Box:

= ~ Skeleton Dialoy Bax i
[SV Edit View Help
Eait Bax:[| Cowbo Box [+]
C—— 1 |
List Box: 3 _J
. Frame Box —M—

::,'.,'.g = [Check Box One

John F.

John L. — QO Radic Button One

Keuin QO Radio Button Two

Larry + b

[+ [I I+
Property Prefix bwDB(0). All properties must be preceded by

there prefix for proper operation.
(Example: bwDB(0).paint=0)

Properties
paintobj addobj objidnum *
update * nodreset * enable
objid * status * dbx1
dobyl dbx2 dby2
dclor nonmoveflag noncloseflag
nontitleflag * nonborderflag sizeflag *
ws3dflag sysfontnum titlebarwid
title titiebaroffset

*

supported.

These properties are reserved for future development and are not currently

EllTech Development, Inc.

Action

Syntax

Remarks

See Also

Example

Draws a Dialog Box Window using the parameters set in the
Dialog Box Properties.

gBuildDialogBox%

Always use this procedure for creating a new Dialog Box
Window, because it automates the process of creating a
Dialog Box Window by combining the standard procedures
used to create a new window.

The Dialog Box Properties must be set prior to calling this
procedure. The properties and an example of how use this
procedure is shown below.

Note: The Pull Down Menu property pdmenuflag is not part

of the Dialog Box structure. This property is used solely by
the EGUI Form Generator.

gRemoveDialogBox%

'‘This Code should be located in the Draw Dialog Box Section

‘of the DBFormat

'Build Dialog BOX --—————==-——s e
GOSUB gSkeltonDBReSetDialogBox ‘Set Properties
retcode% = gBuildbDialogBox$%

‘Place this code in the Dialog Box Properties Section of the

'DBFormat

gSkeltonDBReSetDialogBox: '‘Set Properties
bwDB(0)paintobj = 0 '‘Always Zero
bwDB(0)addobj = 0 '‘Always Zero
bwDB(0)enable = -1 'Ignored for DB
bwDB (0)dbxl = x1% ‘Current Static Coords
bwDB(0)dbyl = yl$ ‘Current Static Coords
bwDB (0) dbx2 = x2% ‘Current Static Coords
bwDB (0)dby2 = y2% ‘Current Static Coords
bwDB (0)nonmoveflag = 0 ‘Movalbe Box

bwDB (0) noncloseflag 0 'Close Button Enabled
bwDB (0)nontitleflag 0 'Title Bare Exists
bwDB (0) nonborderflag = 0 ‘'Border Enabled
bwDB(0)ws3dflag = 0 ‘"standard Background
bwDB(0)}title = "Skeleton Dialog Box"

RETURN

Control Functions

gChkOptBox% Control Function

The Check Option Box Control displays a check button or a radio button with
text to the right side of the button. A Check Button is and option that can be
turned on or off. Use this control to give the user a true/flase or yes/no option.
Check Boxes may also be used in groups to display multiple choices from which
the user may chose one or more options. A Radio Button is and option that can
be turned on or off. Radio Buttons should be used as option buttons only. The
difference between a check button and a radio button is that if a radio button is
selected all other radio buttons should be canceled (turned off), whereas any
check buttons may be on or off. Below is a typical check button and two radio
buttons.

Frane Box

O Radio Button One
(® Radio Button Two

Property Prefix bwBT(0). All properties must be preceded
by there prefix for proper
operation.

(Example: bwBT(0).paint=0)

Properties

paintobj addobj objidnum *
update nodreset * tabflag
enable objid status

x1 yl actsusflag
buttontype dcolr active
border sysfontnum shadowflag
accelkey button **

* These properties are reserved for future development and are not supported.
** These properties are not supported in the EGUI Generator, only the library.

12-3

- EllTech Development, Inc.

Draws a Check Box or Radio Button using the parameters set with

Use the bwBT(0).button property to select a Check Box or Option

Button. Note: Option Buttons are grouped in the Generator only.

Action

Check Option Box Properties.
Syntax gChkOptBox% text$)
Remarks
Example

‘This code should be located in the Draw Dialog Box Section

'of the DBFormat
‘*Setup Draw Chk Box Number 0
GOSUB EXAMPLEReSetChkBox0

bwBT (0) .paintobj = -1
bwBT (0) .addobj = -1
List
bwBT (0) .update = -1
retcode% = gChkOptBox$ (text$)

‘Place this code in a Case Statement
CASE case_select_number

GOSUB EXAMPLEReSetChkBox(
retcode% = gChkOptBox% (Text$)
ChkBox0Oflag$ = bwBT(0).active
IF retcode% = -3 THEN

GOSUB EXAMPLEProcessKey

any
END IF

‘Place this code in the

'DBFormat
EXAMPLEReSetChkBox0:
bwBT (0) .paintobj

bwBT(0) .addobj = 0
bwBT (0) .update = 0
bwBT(0) .tabflag = -1
bwBT(0) .enable = -1
bwBT(0) .objid = -1
bwBT(0) .status = 0
bwBT(0) .x1 = (x1% + 40)
bwBT(0) .yl = (y1l% + 112)

bwBT(0) .actsusflag = 0
bwBT(0) .depress = 0

bwBT (0) .objheight = bwCheckButtonWids
bwBT (0) .objwidth = bwCheckButtonWid$

bwBT(0) .buttontype = 1
bwBT(0) .dcolr = 0

bwBT(0) .active = ChkBox0flag$
bwBT (0) .border = 0
bwBT (0) .sysfontnum
bwBT (0) . shadowflag
bwBT (0) .button = 0

1
0

bwBT(0) .accelkey = 0
Text$ = "Check Box 0"
RETURN

‘Paint the Object
'Add Obj to Object

‘Update the Object

in the Window Main Loop
‘Set Obj Properties
‘Call the Ctrl Obj
'Reset Local Poniter

‘Process Key Press if

Dialog Box Properties Section of the

'Set Local Properties

'Set Std But Hgt
'set Std But wWid

‘Pass Local Pointer

'0=CheckBox 1=OptionButton

12-4

Control Functions

gComboBox% Control Function

A Combo Box Control combines the features of an Edit Box and a List Box.
Use this control to enable the user to make a selection by typing text into a edit
box or by selecting an item from the list below it. Below are three typical

combo boxes.
Combo Box Drop Down Box Active
[[*
I—
Drop Down Box
| B o
Property Prefix bwEC(0). All properties must be preceded
by there prefix for proper
operation.
(Example: bwEC(0).paint=0)
Properties
paintobj addobj objidnum *
update nodreset * tabflag
enable objid status
combo dropdown row
col noeditflag slen
dlen oiflag deolr
autotab eptr ** dptr **
rate ulcase format
border sortflag movetoflag
sysfontnum shadowflag numflag
num2disp novsbflag hsbflag

*

These properties are reserved for future development and are not supported.

** These properties are not supported in the EGUI Generator, only the library.

12-56

EllTech Development, Inc.

Action

Syntax

Remarks

Example

Draws a Combo Box using the parameters set with the Combo
Box Properties.

gComboBox%(comboselection$, combolist$(), reserved%)

The properties bwEC(0).combo and bwEC(0).dropdown select
whether the combo box is a drop down type or a combo type. A
drop down box does not allow the user to type text in the edit box,
instead the item selected from the list is displayed in the edit box.

NOTE: The Edit Box Control must precede the Combo Box
Control in the DBFormat Main Loop Case Statement for proper
operation of a Combo Box. The Current Object Number is
managed internally by the Object Manager during tabs and object
selection.

NOTE: To Enable or Disable a Combo Box the
bwEC(0).paintobj and bwEC(0).addobj properties must be True
when setting the bwEC(0).enable to True or False. Also
bwEC(0).slen and bwEC(0).dlen must have the same values as
when originally added to the Object Control List.

'This code should be located in the Draw Dialog Box Section
‘of the DBFormat
'Setup Combo Box Edit Box Number 2

GOSUB EXAMPLEReSetComboBox2

bwEC (0) .paintob] = -1

bwEC (0) .addobj = -1

bwEC(0) .update = -1

retcode% = gEditBox% (ComboSelection2$)

'Setup Combo Box Button Number 2

GOSUB EXAMPLEReSetComboBox2

bwEC (0) .paintobj = -1
bwEC (0) .addobj = -1
bwEC (0) .update = ~1

retcode% = gComboBox% (ComboSelection2$, ComboList2$(),_

Reserved$)

(Continued On Next Page)

12-6

Control Functions

‘Place this code in a Case Statement in the Window Main Loop

CASE case_select_number
GOSUB EXAMPLEReSetComboBox2

retcode% = gEditBox%(ComboSelection2$)

IF retcode% = -3 THEN
GOSUB EXAMPLEProcessKey
END IF

CASE case_select_number
GOSUB EXAMPLEReSetComboBox2

retcode$ = gComboBox% (ComboSelection2$, ComboList2$(),_

IF retcode% = -3 THEN
GOSUB EXAMPLEProcessKey
END IF

Reserved$)

'Place this code in the Dialog Box Properties Section of the

'DBFormat

EXAMPLEReSetComboBox2:
bwEC (0) .paintobj =
bwWEC(0) .addobj = 0
bwEC(0) .update = 0
bWEC (0) .tabflag = -1
bwWEC(0) .enable = -1
bwEC(0) .objid = -1
bwEC(0) .status = 0
bwEC(0) .dcolr = 0
bwEC(0) .sysfontnum = 0
bwEC(0) .combo = -1
bWEC (0) .dropdown = 0
bWEC(0) .row = (yl% +56)
bwEC(0).col = ((x1% \ 8) + 34)
bwEC (0) .noeditflag = 0
bWEC(0).slen = 255
bwEC(0) .dlen = 15
bwEC(0) .0iflag = 0
bwEC (0) .autotab = 0

]

bwEC(0) .eptr = 0
bwEC(0) .dptr = 1
bwEC(0) .rate = 4
bwEC(0) .ulcase = 0
bwWwEC(0) . format = 0

bwEC(0) .justify = 0
bwEC (0) .border = -1
bwEC (0) .shadowflag = -1
bwEC(0) .numflag = 0
bwEC(0) .sortflag = 0
bwEC(0) .movetoflag = 0
bwEC(0) .num2disp = 6
bWEC (0) .novsbflag
bwEC(0) .hsbflag
bwEC(0) .hpagesz
bWwEC(0) .mx 0
bwEC(0) .my 0
bwEC (0) .mb 0
bwEC(0) . keypress = 0
Text$ = *ComboBox2*
RETURN

=0
0
1

'For Internal Use
'For Internal Use

'For Internal Use

'For Internal Use
‘For Internal Use
‘For Internal Use
'‘For Internal Use

12 -7

Control Functions

gCommandButton% Control Function

A Command Button Control should be used to perform a task when selected by
the user, who either clicks the button with the left mouse button or presses the

ENTER key when the button has the focus.

Below are some typical command buttons:

OK || I_Cancel | Help |

Property Prefix bwBT(0). All properties must be preceded
by there prefix for proper
operation.

(Example: bwBT(0).paint=0)

Properties

paintobj addobj objidnum *

update nodreset * tabflag

enable objid status

x1 yl depress **

objheight objwidth buttontype

dcolr border sysfontnum

assignobj accelkey icon

iconx loff icony loff logicflag

iconfile

*

These properties are reserved for future development and are not supported.

** These properties are not supported in the EGUI Generator, only the library.

12-9

EllTech Development, Inc.

Action

Syntax

Remarks

Example

Draws a Command Button using the parameters set with the
Command Button Properties.

gCommandButton% text$)

To display text on a Command Button, assign the text information
to the text$ property.

To display and /con on a Command Button, set the bwBT(0).icon
property to True (-1) and assign an Icon Filename, with optional
drive and path if desired, to the bwBT(0).iconfile property (Note:
1t is recommended to use the IconPath$ environment variable for
assigning the icon path info). You may position the icon on the
button with the bwBT(0).iconxloff and bwBT(0).iconyloff
properties.

'This code should be located in the Draw Dialog Box Section
'‘of the DBFormat
'Setup Button Number 1

GOSUB EXAMPLEReSetButtonl
bwBT(0) .paintobj = -1
bwBT (0) .addobj = -1
bwBT (0) .update = -1

retcode% = gCommandButton% (text$)

'Place this code in a Case Statement in the Window Main Loop
CASE case_select_number

GOSUB EXAMPLEReSetButtonl
retcode% = gCommandButton% (Text$)
IF retcode% = -2 THEN

'Place Task to perform here
ELSEIF retcode% = -3 THEN

GOSUB EXAMPLEProcessEKey
END IF

(Continued On the Next Page)

12-10

Control Functions

‘Place this code in the Dialog Box Properties Section of the
'DBFormat

EXAMPLEReSetButtonl:
bwBT(0) .paintobj 0
bwBT (0) .addobj =
bwBT(0) .update =
bwBT(0) .tabflag = -1
bwBT(0) .enable = -1
bwBT(0) .cbjid = -1
bwBT(0) .status = 0
bwBT(0) .x1 = (x1% + 32)
bwBT(0) .yl = (yl% + 232)
bwBT (0) .depress = 0
bwBT (0) .objheight = 24
bwBT (0) .objwidth = 96
bwBT (0) .buttontype = 2
bwBT(0) .dcolxr = 0
bwBT(0) .border = -1
bwBT (0) .sysfontnum = 1
bwBT (0) .assignobj = 0
bwBT (0) .accelkey = 0
bwBT(0) .icon = 0
bwBT(0) .iconxlof £
bwBT (0) . iconyloff
bwBT(0) .logicflag
bwBT(0) .iconfile = *
Text$ = "Buttonl®

RETURN

nonou
sounwu;m

12-11

Control Functions

gEditBox% Control Function

An Edit Box Control displays information you specify or the user enters. The
Edit Box will only display one line of text to be edited, for multiple lines use a
List Box Control with the bwLB(0).editflag property set to True (-1).

Below is a typical Edit Box, the text to the left of the box is displayed using
gDrawTextCol%.

Edit Box: I|'1'ext]
Property Prefix bwEC(0). All properties must be preceded
by there prefix for proper
operation.

(Example: bwEC(0).paint=0)

Properties

paintobj addobj objidnum *
update nodreset * tabflag
enable objid status

row col nocditflag
slen dlen oiflag
dcolr autotab eptr **
dptr ** rate ulcase
format border sysfontnum
shadowflag numflag

* These properties are reserved for future development and are not supported.

** These properties are not supported in the EGUI Generator, only the library.

12-13

EllTech Development, Inc.

Action Draws a Edit Box using the parameters set with Edit Box
Properties.

Syntax gEditBox%(tex:3)

Remarks Only charcter strings may be edited in an Edit Box. To edit
numeric input, use the STRS Function to convert the value to a
string before passing it to the Edit Box Control. After editing the
value you may convert it back to a numeric type with the VAL
Function.

Example

'This code should be located in the Draw Dialog Box Section
'of the DBFormat
‘Setup Edit Box Number 1

GOSUB EXAMPLEReSetEditBox1l

bwEC (0) .paintobj = -1

bwEC (0) .addobj = -1

bwEC (0) .update = -1

retcode% = gEditBox%(Text$)

‘Place this code in a Case Statement in the Window Main Loop
CASE case_select_number

GOSUB EXAMPLEReSetEditBoxl
retcode% = gEditBox%(Text$)
IF retcode% = -3 THEN

GOSUB EXAMPLEProcessKey
END IF

(continued of next page)

12-14

Control Functions

‘Place this code in the Dialog Box Properties Section of the

'DBFormat

EXAMPLEReSetEditBoxl:
bWwEC(0) .paintobj =
bwEC(0) .addobj = 0
bwEC (0) .update = 0
bwEC (0) .tabflag = -1
bwEC (0) .enable = -1
bwEC (0) .objid = -1
bwEC (0) .status = 0
bwEC (0) .dcolr = 0
bwEC (0) .sysfontnum = 0
bWEC(0) .row = (yl% +56)
bwEC(0).col = ((x1% \ 8) + 11)
bwEC(0) .noeditflag = 0
bwEC(0) .slen = 255
bwEC (0) .dlen = 10
bwEC (0) .ciflag = 0
bwEC (0) .autotab = 0

0

bwEC(0) .eptr = 0
bwEC(0) .dptr = 1
bWwEC(0) .rate = 4
bwEC(0) .ulcase = 0
bwEC(0) .format = 0

bwEC (0) . justify = 0
bwEC (0) .border = -1
bwEC (0) .shadowflag = -1
bwEC(0) .numflag = 0

bWEC(0) .mx = 0
bwEC(0).my = 0
bwEC(0) . .mb = 0

bwEC(0) .keypress = 0
Text$ = *EditBoxl*
RETURN

‘For
'For

‘For

‘For
'For
'For
'For

Internal
Internal

Internal

Internal
Internal
Internal
Internal

Use
Use

Use

Use
Use
Use
Use

12-15

Control Functions

gHorzScrollBar% & gVertScrollBar% Control

Function

Scroll Bars are graphical tools for quickly navigating through a long list of
items or a large amount of information, and for indicating the current position
on a scale. A scroll bar can also be used as an input device or an indicator of
speed or quantity; for example, to control the adjustment of a custom color or to
view the time elapse in a timed process. There are two scroll bar functions,
Both use the same properties but have different
function names. Below are two typical scroll bars.

Horizontal and Vertical.

[+]
[+ I [+]
4]
Property Prefix bwSB(0). All properties must be preceded
by there prefix for proper
operation,
(Example: bwSB(0).paint=0)
Properties
paintobj addobj objidnum *
update nodreset * tabflag
enable objid status
x1 yl objheight
objwidth frame value
min max smallchange
largechange

*

These properties are reserved for future development and are no supported.

12 -17

EllTech Development, Inc.

Action Draws a Horizontal or Vertical Scroll Bar using the parameters set
with Scroll Bar Properties.

Syntax gHorzScrollBar%
gVertScrollBar%

Remarks A Horizontal Scroll Bar is used for the example, however to create
a Vertical Scroll Bar replace gHorzScrollBar% with
gVertScrollBar% and set the properties bwSB(0).objheight to
the height in pixels and bwSB(0).objwidth =
bwStandButwid%.

Example

'This code should be located in the Draw Dialog Box Section
'of the DBFormat
'Setup Horz Scroll Bar Number 1 ---------~e—woomm

GOSUB EXAMPLEReSetHorzSBarl
bwSB(0) .paintobj = -1
bwSB(0) .addobj = -1

bwSB(0) .update = -1
retcode$ = gHorzScrollBar$%

‘Place this code in a Case Statement in the Window Main Loop
CASE case_select_number

GOSUB EXAMPLEReSetHorzSBarl

retcode% = gHorzScrollBar%

bwHorzSBarvVall! = bwSB(0).value

IF retcode% = -3 THEN

GOSUB EXAMPLEProcessKey
END IF

‘Place this code in the Dialog Box Properties Section of the
' DBFormat
EXAMPLEReSetHorzSBarl:
bwsSB(0) .paintobj = 0
bwsB(0) .addobj = 0
bwSB (0) .update = 0
bwsSB(0) .tabflag = -1
bwSB(0) .enable = -1
bwSB(0) .objid = -1
bwSB(0) .status = 0
bwsB(0) .x1 = (x1% + 24)
bwSB(0) .yl = (yl% + 288)
bwSB(0) .objheight = bwStandButwid%
bwsSB(0) .objwidth = 400
bwsB(0) .frame = 20
bwsB(0) .value = bwHorzSBarVall!
bwSB(0).min = 0
bwSB(0) .max = 100
bwsSB(0) .smallchange
bwSB(0) .largechange
RETURN

non
N
o

Control Functions

gListBox% Control Function

A List Box displays a list of items from which the user can choose one; an
exception to this is when the bwLB(0).tagflag property is set to True the user
may select (tag) as many items as desired. A vertical scroll bar is automatically
added to the list box to allow scrolling of items. Below is a typical list box.

FILEPATH.BAS | ¢
FILEPATH .EXE
FILEPATH.LST
FILEPATH .MAK
FILEPATH.OBJ
“FILEPAT.BAT

*

Property Prefix bwLB(0). All properties must be preceded
by there prefix for proper
operation.

(Example: bwLB(0).paint=0)

Properties

paintobj addobj objidnum *

update nodreset * tabflag

enable objid status

x1 yl dptr **

aptr ** Iptr ** dcolr

tagflag novsbflag hsbflag

hpagesz elmwid ** charwid

chrhgt intflag ** noborderflag

headerflag * headercolr * headerfont *

editflag movetoflag dbiclkflag

_, clearflag hlineflag * hlinecolr *
sortflag sysfontnum shadowflag

These properties are reserved for future development and are not supported.

** These properties are not supported in the EGUI Generator, only the library.

12-19

EllTech Development, Inc.

Action Draws a List Box using the parameters set with the List Box
Properties.

Syntax gListBox%(array$(), arrayheader$)

Remarks No remarks.

Example

'This code should be located in the Draw Dialog Box Section
‘of the DBFormat
'Setup List Box Number 1 ----~==---------mmmom o mmo oo

GOSUB EXAMPLEReSetListBoxl

bwLB(0) .paintobj = -1

bwLB(0) .addobj = -1

bwLB(0) .update = -1

retcode% = gListBox% (Arrayl$ (), ArrayHeaderl$)

‘Place this code in a Case Statement in the Window Main Loop
CASE case_select_number
GOSUB EXAMPLEReSetListBoxl
retcode% = gListBox% (Arrayl$ (), ArrayHeaderl$)
IF retcode% = -3 THEN
GOSUB EXAMPLEProcessKey
END IF

(continued on next page)

12-20

Control Functions

‘Place this code in the

'DBFormat

EXAMPLEReSetListBoxl:

bwLB((0) .paintobj
bwLB(0) .addobj =
bwLB(0) .update =
bwLB(0) .tabflag =
bwLB(0) .enable =

bwLB({0).objid = -
bwLB(0) .status =

bwLB(0).x1 =
bwLB(0) .yl =
bwLB(0) .dptr
bwLB(0) .aptr
bwLB(0) .rptr
bwLB(0) .tagflag
bwLB(0) .arraysz =
bwLB(0) .novsbflag
bwLB(0) .hsbflag =
bwLB(0) .hpagesz

bwLB(0) .elmwid =
bwLB (0) .charwid

bwLB{0) .charhgt

bwLB(0).intflag

1
1
1

bwLB(0) .headerflag

bwLB(0) . headercol
bwLB(0) .editflag

bwLB(0) .movetoflag
bwLB(0) .dblclkflag

bwLB(0) .clearflag
bwLB(0).sortflag

bwLB{0).sysfontnum
bwLB(0) .shadowflag
RETURN

(==l

1
0

r

-1
1

o

4

= b= O H

(x1% + 280)
(y1l% + 123)

-256

Hmnonn

nio

‘For
‘For
'For

‘For

‘Lib
'Lib

'For
'Lib
‘Lib

Dialog Box Properties Section of the

Internal Use
Internal Use
Internal Use

Internal Use

Supported Only
Supported Only

Internal Use
Supported Only
Supported Only

12-21

Control Functions

gObjManager% Control Function

The EGUI System is based on the usage of Program Objects linked together to
build your applications User Interface. The Object Manager does the task of
keeping all the objects organized and controllable. Use the Object Manager to
add, remove, find or modify any object which have been created. The Object
Manager is not accessible through the EGUI Generator only the EGUI Library
when you are writing code. Most of the code necessary to use the Object
Manager will be created when you build a Function or Module from the
Generator.

Property Prefix bwOL(0). All properties must be preceded
by there prefix for proper
operation.
Example:bwOL(0).addobjflag=-1)

Properties

objx1 objyl objx2
objy2 reobjx1 reobjx2
reobjy2 tabflag enable
addobjflag objidnum

NOTE: None of these properties are accessible through the EGUI Generator
only the EGUI Library.

12-23

EllTech Development, Inc.

Action Manage all objects which exists in the EGUI System.,

Syntax gObjManager%

Remarks The most important property of the object manager is the
' bwOL(0).addobjflag. This property is used to select the action
you want the object manager to take on an object. Below is a list

of those options.

-1 = Add Object to Object List

-2 = Search for an Object in the List
-3 = Remove Object from the List
-4 = Get Next Active Object

-5 = Get Last Active Object

-6 = Set Active Object Boundaries
-7 = Set Dialog Box Move Object

-8 = Enable and Object

-9 = Disable and Object

-10 = Reassign Object Perimeter

-11 = Set Button Assignment Obj Number
-12 = Get Object Status

Note: When using option -12 the bwOL(0).objidum property
must be set with the Object Handle you wish to get prior to
calling. The object handle can be obtained when you create the
aobject from the bw OL(0).objidnum property.

Example

'Add Object to Object List

bwOL (0) .objx1 = 100 'Set the Object Rectangle Area
bwOL (0) .objyl = 100

bwOL (0) .objx2 = 200

bwOL(0) .objy2 = 300

bwOL (0) .enable = -1 'Enable the Object

bwOL (0) .tabflag = -1 'Enable Tab Process

bwOL (0) .addobjflag = -1 'Add the Object to the List

retcode$ =

gObjManager% '‘Call the Object Manager

12-24

N

Control Functions

gPullDownMenu% Control Function

A Pull Down Menu displays a customized menu for your application. Items on
a menu can include commands the user can choose to carry out an action,
submenu names, and separator bars. Note: a menu should not exceed the
Dialog Box borders when pulled down, so adjust your menu items accordingly.
Below is a typical Pull Down Menu:

— Skeloton Disloy Box |
[AICY Edit View Help .
Sub Menu
Sub Henu
Su[b ﬂcnu&
Sub Menu
Property Prefix bwPD(0). All properties must be preceded
by there prefix for proper
operation.
Example:bwPD(0).addobjflag=-1)
Properties
paintobj addobj objidnum *
update nodreset * enable
objid status parxl
paryl parx2 pary2
menx]1 meny1 ' menx2
meny2 menucolr menutextcolr
menustatuscolr menulinehgt sysfontnum
shadowflag

* These properties are reserved for future development and are not currently supported.

NOTE: None of these properties are accessible through the EGUI Generator
only the EGUI Library.

12-25

EliTech Development, Inc.

Action

Syntax

Remarks

Draw a Pull Down Menu using the parameters set with Pull Down
Menu Properties.

gPullDownMenu%(imenuitem3(), menustatus%(),menuacckey%(),

barmenu%,pdmenu%, keypress%)

Important: Before calling the Pull Down Menu object you must
first set the object up using gSetPDMenu% in the Draw Dialog
Box Section of the DBFormat. It is also important to note that
the pdmenuflag property, (located within the Dialog Box
properties), in the EGUI Generator is used to turn a menu On and
Off in the Generator, and this property is not accessible in the
Library.

menuitems$ Variable length string array which holds the
items in a menu list. This array must be
dimensioned to the correct maximum menu
size prior to assigning items. By default the
EGUI Generator will set the maximum
menu size to 15. This may be increased or
decreased in code as needed.

menustatus% Integer array which indicates if a menu item
is unselectable or selectable. To make the
item unselectable (grayed out) set this value
to True (-1). Else a False (0) value makes
the item selectable.

menuacckey% Integer array which indicates if a menu item
has an Accelerator Key and if so which
character. Set to zero for no Accelerator
otherwise set to the character number in the

item.

barmenu% Integer value which returns the bar menu
selected.

pdmenu% Integer value which returns the pull down

menu item selected.

12 - 26

Control Functions

See Also

Example

keypress% Integer value which returns the value of the
key which was pressed.

(continued on next page)
NOTE: The function returns a -3 if a menu selection is made.

The arrays menuitem$(), menustatus%(), and menuacckey%()
must be dimensioned to there proper size before calling
gPullDownMenu%. The variable NumofSelection% is used to
dimension a multidimensional array for the pull down list. This
variable should be adjusted to a size large enough to accommodate
the largest list, however make sure that when the list is pulled
down it does not extend past the Dialog Box borders. The other
variable used to dimension the item array is NumofMenus% which
sets the total number of pull down menu lists.

gSetPDMneu%o

See the following pages for sample code for building a Dialog
Box with a Pull Down Menu.

12-27

EliTech Development, Inc.

Example (continued)

'Egui Application Function Module Pull Down Menu Example

AUTHOR: Your Name

FileName: F:\EGUI\PDMENU.BAS

‘Load Include Files

REM $INCLUDE: 'BWENV.INC'
REM $INCLUDE: 'BWPRP.INC'®
REM S$INCLUDE: 'BWCTR.INC®

'‘Declare Internal Basic Functions

DECLARE FUNCTION PDMTESTS ()
DECLARE FUNCTION PDMTESTReSetPDMenuProps$% ()

'Setup Error Handling [Optional)

ON ERROR GOTO MainExit 'Optinal Code

'Clear Extra Stack Space

CLEAR , , 3000

Vmode% = 12
ClrScrflag% = -1
retcode$% = gSetVideoMode% (Vmode%, ClrScrflag$)

‘Initialize Egul System
IF NOT retcode% THEN
retcode$ = gInitBWSystem$
ELSE
GOTO MainExit
END IF

'Main Function Call

retcode%$ = PDMTESTS%

MainExit:

'Hide Cursor & Reset Screen Mode to Text

retcode% = gHideMouse$% !
Vmode% = 0

ClrScrflags = -1

retcodet = gSetVideoMode% (Vmode%, ClrScrflag$)

'If Error Occured Print Error Code and Message on Exit[Optional)

12 -28

Control Functions

IF ERR THEN
PRINT "Error
END IF

'End Program ----

END

FUNCTION PDMTESTS

"; 0; Occured, Program; Aborted.; *°*

‘Setup Error Handler -----------mmmmm e
ON LOCAL ERROR GOTO PDMTESTError

'Setup Dialog Box Boundery Parameters --—------—-——-————mecmeee——-

IF x2% = 0 THEN

Xx1% = 96: yl1% = 136

x2% = 544: y2% = 400
END IF
‘Setup Pull Down Menu Arrays ----—=------=-—--c- e
NumofPDMenus$ = 2 ‘Number of Menu Bar Items
NumofSelections% = 15 ‘'Number of Selections for each Pull Down
REDIM Menultems$ (NumofPDMenus$%, NumofSelections%)
REDIM MenuStatus$ (NumofPDMenus%, NumofSelections$)

REDIM
REDIM
REDIM
REDIM
REDIM

‘Build
GOSUB

'Setup

DO

MenuAccKey$ (NumofPDMenus%, NumofSelections%)
mWinbar$ (NumofPDMenus%, 2)
mWinmen$% (NumofPDMenus%, NumofSelections$%, 2)

menbarpos$
menselpos$

Dialog Box

(UBOUND (MenulItems$))
{(UBOUND (MenuItemss$), 2)

PDMTESTBuildDialogBox

Main Loop

SELECT CASE CurrentObjNum$

CASE -1
Box

'CASE -1 Close Dialog

PDMTESTS = -1 'Close Button
Procedure
EXIT DO

CASE 0
Box
SavRe

'CASE 0 Move Dialog

sflag$ = -1

retcode% = gScreenFiler%(Bxl%, Byl%, Bx2%, By2%,_

SavResflag$)
x1% = movxl%$: yl% = movyl$
x2% = movx2%: y2% = movy2%
GOSUB PDMTESTBuildDialogBox
CASE 1
retcode$ = PDMTESTReSetPDMenuProps$
retcode$% = gPullDownMenu% (Menultemss$ (),
MenuStatus$(), _
MenuAccKey% (), BarMenu%, PDMenu%, KeyPress%)

12-29

EllTech Development, Inc.

IF retcode% = -3 THEN
GOSUB PDMTESTProcMenuSel
GOSUB PDMTESTProcessKey
END IF

CASE ELSE
CurrentObjNum$ = 1

END SELECT

LOOP

PDMTESTEXit:

'Remove Dialog BOX ----------—=-rm--memm e mm o — - -
retcode% = gRemoveDialogBox$

'Exit Function ------=-----------—---—-oceomemmoo——oo—o—o oo
EXIT FUNCTION

PDMTESTBuildDialogBox:

'‘Draw Dialog BOX -----=---=---m===—-- - - ————-——--—---
GOSUB PDMTESTReSetDialogBox
retcode% = gBuildDialogBox%

‘Setup Pull Down Menu --------—--—----—--=------oo——oo—ooooo—-oo
retcode% = PDMTESTReSetPDMenuProps%

bwPD(0) .paintobj = -1
bwPD(0) .addobj = -1
retcode$% = gSetPDMenu% (MenuItems$ (), MenuStatus%(),

MenuAccKey% ())

'Get Current Bounderies ------==--------——————------—-——------
bwOL (0) .addobjflag% = -6
retcode% = gObjManager$

'Set Current Object Number --------------—--———-——————o——----=
CurrentObjNum$ = 1

RETURN

PDMTESTReSetDialogBox:

bwDB(0) .paintobj = 0
bwDB(0) .addobj = 0
bwDB(0) .enable = -1

bwDB (0) .dbx1l = x1%
bwDB(0) .dbyl = y1%
bwDB (0) .dbx2 = x2%
bwDB(0) .dby2 = y2%

bwDB(0) .nonmoveflag = 0
bwDB(0) .noncloseflag = 0
bwDB(0) .nonborderflag = 0

12-30

Control Functions

bwDB(0) .ws3dflag = 0

bwDB (0) .sysfontnum = 0

bwDB(0) .titlebaroffset = 0

bwDB(0) .title = *Pull Down Menu Form®

RETURN

PDMTESTProcessKey:

RETURN
poMTESTPROGMemusel:s
IF BarMenu% = 1 THEN
IF PDMenu% = 1 THEN
‘Place Code to Process on Pull Down Menu Selection Here!
ELSEIF PDMenu% = 2 THEN
‘Place Code to Process on Pull Down Menu Selection Herel!
ELSEIF PDMenu% = 3 THEN
‘Place Code to Process on Pull Down Menu Selection Here!
ELSEIF PDMenu% = S5 THEN
‘Place Code to Process on Pull Down Menu Selection Herel!
ELSEIF PDMenu% = 7 THEN
‘Place Code to Process on Pull Down Menu Selection Here!
END IF
END IF
IF BarMenu% = 2 THEN
IF PDMenu% = 1 THEN
‘Place Code to Process on Pull Down Menu Selection Herel
ELSEIF PDMenu% = 2 THEN
‘Place Code to Process on Pull Down Menu Selection Here!
ELSEIF PDMenu% = 4 THEN
‘Place Code to Process on Pull Down Menu Selection Here!
END IF
END IF

RETURN

12 -31

EllTech Development, Inc.

PDMTESTError:
PDMTEST% = ERR
retcode% = gDispErrorMess$% (ERR, ErrorMessage$, ErrorPostion$)
RESUME PDMTESTExit

END FUNCTION

FUNCTION PDMTESTReSetPDMenuProps$

'Setup Pull Down Menu AIrays --=—--====------———o-m— oo

NumofPDMenus$% = 2 ‘Number of Menu Bar Items
NumofSelections% = 15 'Number of Selections for each Pull
Down

REDIM Menultems$ (NumofPDMenus%, NumofSelections%)

REDIM MenuStatus$% (NumofPDMenus%, NumofSelections%)
REDIM MenuAccKey$% (NumofPDMenus$%, NumofSelections$)
REDIM mWinbar$% (NumofPDMenus%, 2)

REDIM mWinmen$% (NumofPDMenus%, NumofSelections%, 2)
REDIM menbarpos$ (UBOUND (Menultems$))

REDIM menselpos$ (UBOUND (MenuItems$), 2)

'Setup Pull Down Menu Control Properties -------—---ceocomau_——

bwPD(0) .paintobj = 0

bwPD(0) .addobj = 0

bwPD(0) .update = 0

bwPD(0) .tabflag = -1

bwPD(0) .enable = -1

bwPD(0) .0bjid = 0

bwPD(0).status = 0

bwPD(0) .menx1 (bwDB(0) .dbx1l + bwEV(0).Borderwid)

bwPD(0) .menyl (bwDB(0) .dbyl + bwTitleBarHgt% + _
bwEV (0) .Borderwid)

(bwDB (0) .dbx2 - bwEV(0).Borderwid)

-1

bwPD(0) .menx2
bwPD(0) .meny2

‘Setup Menu Bar ItemS —-—------mmmr oo e e — e
MenuItems$(l, 0) = "File"®

MenuStatus$(1, 0) 0

MenuAccKey$(1, 0) 1

MenuItems$(2, 0) = *Edit*

MenusStatus$(2, 0) 0

MenuAccKey$(2, 0) 1

‘Setup Menu Selection List 1 ----c—-c-cmmmmm e -
Menultems$(l, 1) = *New*

MenuStatus%(1, 1) 0

MenuAccKRey% (1, 1) 1

Menultems$ (1, 2) = *"Open*

MenuStatus$ (1, 2) 0

MenuAccKey$ (1, 2) 1

MenuItems$(l, 3) = °"Close*"

MenuStatus%(1l, 3)
MenuAccKey% (1, 3)
MenuItems$ (1, 4) = *-*
MenuStatus%(1l, 4)
MenuAccKRey$% (1, 4)
Menultems$(1l, 5) = °*Print"*
MenuStatus$%(1, S)
MenuAccKRey$%(1l, S)

nn nn inn nn
o 18]

nn
1
[

12 -32

Control Functions

Menultems$(1l, 6) = °-*
MenuStatus%(1l, 6)
MenuAccKey% (1, 6)
MenuItems$ (1, 7) = ®"Exit*
MenuStatus% (1, 7)
MenuAccKey$%(1l, 7)

nou
o

o
N

‘Setup Menu Selection List 2 ----~-----==--------------o-oo-oo—
MenulItems$(2, 1) = "Copy ctrl-c*

MenuStatus% (2, 1) 8]

MenuAccKey% (2, 1) 1

MenuItems$ (2, 2) = “Paste Ctrl-P*

MenusStatus% {2, 2)
MenudccKey$% (2, 2)
Menultems$ (2, 3) = *-*
MenuStatus% (2, 3)
MenuAccKey% (2, 3)
Menultems$(2, 4) = ‘'Delete*
MenuStatus% (2, 4) -1
MenuAccKey% (2, 4) 1

non
[

ol
o

END FUNCTION

12-33

Library
Functions

Chapter 13

Library Functions

g3DBox% Function

A Action
Syntax
Remarks

a_—

See Also

Draws a three dimensional filled box.

23DBox% (x1%,y1%,xd%,yd%,invert%,border%,colrd)

The following parameters are passed to the function:

x1%,y1%

xd%

yd%

invert%

border%

colr&

Integer values indicating the top left corner
of the box, in pixels.

Integer value indicating the width of the box
in pixels.

Integer value indicating the height of the
box in pixels.

If this parameter is set to -1 (True) the box
will be displayed as an inverted 3D box.

If this parameter set to -1 (True) a border
will be drawn around the box using the
system outline color (bwEV(0).Outline).

Long integer wvalue indicating the
background color attribute to paint the box,
or -1 (True) for the box default color.
NOTE: This is a single color value.

g3DRect%, gDrawRect%

(see next page fbr example)

13 -1

EllTech Development, Inc.

Example

x1%
Ylg
xds
yds

100
100
76
28

invert % = 0
border% = -1

colrs

retcode% = g3DBox%(xl%,yl%,xd%,yd%,invert%,border%,colr&)

= bwEV(0) .Gray

13-2

Library Functions

g3DRect% Function

e Action

Syntax

Remarks
—

See Also
.A

Draws a three dimensional rectangle outline.

g3DRect%(x1%,y1%,xd%, yd%, hcolr&,lcolr&)

This procedure is used to create a three dimensional outline
effect around a specific area of the screen. The following
parameters are passed to the function:

x1%,y1%

xd%

yd%

hcolr&

lcolr&

Integer values indicating the top left corner
of the box, in pixels.

Integer value indicating the width of the box
in pixels.

Integer value indicating the height of the
box in pixels.

Long integer value indicating the hightlite
color attribute to paint the rectangles, or -1
(True) for the default color
(bwEV(0). White).

Long integer value indicating the lower
color attribute to paint the rectangles, or -1
(True) for the default color
(bwEV(0).DarkGray).

g3DBox%, gDrawRect%

(see next page for example)

13-3

EllTech Development, Inc.

Example
x1% = 100
y1l% = 100
xd% = 76
yds = 28
hcolr& = -1 ‘Use Default Color
lcolr& = -1 ‘Use Default Color

retcode% = g3DRect% (x1%,yl$%,xd%,yd$, hcolrk,lcolrk)

Library Functions

gBorder%

Function

Action
Syntax

Remarks

Draws a Dailog Box Border.

gBorder%(x1%,y1%,x2%,y2%,bwid%,colrd)

This procedure is used to draw a border around a Dialog Box
Window, however it may be used to draw a border around
any area of the display. The following parameters are passed

to the function:

x1%,y1%

x2%,y2%

bwid%

colr&

Integer values indicating the top left corner
of the border, in pixels.

Integer values indicating the bottom right
corner of the border, in pixels.

Integer value indicating the border width. If
this value is greater than 0, then a Sizeable
Border Style will be drawn. If this value is
set to a negative number a border will be
drawn with no size marks.

NOTE: The bwEV(0).Borderwid value
should be used to set this parameter if a
sizeable border is to be drawn else set to
zero.

Long integer value indicating the color
attribute to paint the border.

NOTE: The bwEV(0).Bordercolr or the

bwEV(0).InActBordercolr should be uscd
to set this parameter.

(see next page for example)

13-5

EliTech Development, Inc.

Example
x1% = 100
y1l% = 100
x2% = 500
y2% = 350

bwid$ = bwEV(0).Borderwid
colr& = bwEV(0).Bordercolr

retcode$ = gBorder%(xl%,yl%,xZ%,yz%,bwid%,colr&)

13-6

Library Functions

gCustomMouse% Function

Action Use this function to create a custom mouse cursor.
Syntax gCustomMouse% (CurMask$, xHotSpot%, yHotSpot%)
Remarks This procedure gives a method for building a custom mouse

cursor when one of the system mouse cursors is not sufficient.
The Cursor type for a custom mouse cursor should always
equal 100. (Note: sce the Microsoft Mouse Programmer's
Reference for more information about the mouse.)

CurMask$ String indicating the pattern mask of the
Cursor,
See the example below for how to build this
mask.

xHotSpot% The x offset for the mouse hotspot.

yHotSpot% The y offset for the mouse hotspot.

See Also gHideMouse%,gShowMouse%

Note: See next page for example

13-7

EllTech Development, Inc.

Example

'‘Standard Mouse Mask Pattern

curmask$

curmask$ = curmask$ + '1;;1111111111111'
curmask$ = curmask$ + *1p01111111111111°
curmask$ = curmask$ + *1p00111111111111°
curmask$ = curmask$ + *1p00011111111111°"
curmask$ = curmask$ + "1D00001111111111°*
curmask$ = curmask$ + '1[0000@111111111'
curmask$ = curmask$§ + '1900000011111111'
curmask$ = curmask$ + *1000000001111111°
curmask$ = curmask$ + "1000000000111111"
curmask$ = curmask$ + *1000000000011111°"
curmask$ = curmask$ + *1000000000011111°*
curmask$ = curmask$ + *1000Q00011111111°"
curmask$ = curmask$ + °1001190001111111°
curmask$ = curmask$ + °1111100001§11111°
curmask$ = curmask$ + "1111119000111111*
curmask$ = curmask$ + "1111110000111111°
curmask$ = curmask$ + *0000000000000000"
curmask$ = curmask$ + "0000000000000000"
curmask$ = curmask$ + *0010000000000000°*
curmask$ = curmask$ + *0011000000000000°*
curmask$ = curmask$ + *0011100000000000°
curmask$ = curmask$ + *0011110000000000°
curmask$ = curmask$ + "OﬂilllfQOOOOOOOO'
curmask$ = curmask$ + *0011111100000000*
curmask$ = curmask$ + "0011111110000000°"
curmask$ = curmask$ + "0011111111000000°*
curmask$ = curmask$ + *0011111000000000*
curmask$ = curmask$ + '00;0011000000000'
curmask$ = curmask$ + *00000011'00000000*
curmask$ = curmask$ + *0000001100000000°
curmask$ = curmask$ + *0000000110000000°
curmask$ = curmask$ + *0000000000000000"
xHotSpot% = 1

yHotSpot% = 1

gCustomMouse$ (CurMask$, xHotSpot%, yHotSpot%)

13-8

Library Functions

gDispErrorMess% Function

. Action

Displays a Window with an Error Message. This procedure is
supplied to remove the need to build a new Dialog Box each
time an Error Message needs to be displayed. If the
information which may be displayed in this procedure does
not meet your needs consider using the gMessageDialog%
procedure or creating your on custom Dialog Box.

Syntax gDispErroMess%(errorcode%,errormessage$,errorpostion$
Remarks Use this procedure in the Local Error Handler to display any
error messages which occur.
errorcode% Integer values indicating the Error Code
which occurred, this may be a BASIC or
DOS Error Code or a custom Error Code,
but a distinction of which should be made in
the Error Message String,
A~
errormessage3 A short Error Message identifying the Error
that occurred.
errorposition§ A short message pointing to the position
that the error occurred.
Example:
errorposition$="MOD:Main-FUNC:gMain
Win"
Example
errorcode% = 53
errormessage$ = "DOS-File Not Found"
- errorposition$=*MOD:Main-FUNC:gMainWin®"

retcode%=gDispErroMess%(errorcode%,errormeséages,err
orpostion$)

13-9

Library Functions

gDrawArc% Function

& Action
Syntax

Remarks

Draws an arc or curve to the display.

gDrawArc%(x!! yl! radius!,colr&,arcstart!,arcend!)

The following parameters are passed to the function:

xliyl!

radius!

colr&

arcstart!

arcend!

Single Integer values indicating the center
of the arc in pixels.

Single Integer value indicating the radius of
the arc in pixels.

Long Integer value indicating the
foreground color of the arc.

Single Integer value indicating the starting
position of the arc in radians. If arcstart! is
negative the angle is treated as positive and
draws a radius to start.

Single Integer value indicating the ending
position of the arc in radians. If arcend! is
negative the angle is treated as positive and
draws a radius to end.

NOTE: To convert values from degrees to radians, multiply

the angle

(in degrees) by pie/180 (which equals

.01745532825199433).

(see next page for example)

13 - 11

EllTech Development, Inc.

Example

x1lt = 100

yl! = 100

radius! = 25

colr& = bwEV(0).Gray

arcstart! = 3,14

arcend! = (270 * .01745532925199433)

retcode% =
gDrawArc%(xl!,yl!,radius!,colr&,arcstart!,arcend!)

13-12

Library Functions

gDrawCircle% Function

~= Action Draws a circle to the display.
Syntax gDrawCircle%(x1/,y1! radius!,colr&,filiflag%)
Remarks The following parameters are passed to the function:
xliyl! Single Integer values indicating the center
of the circle in pixels.
radius! Single Integer value indicating the radius of

the circle in pixels.

colr& Long Integer value indicating the
foreground color of the circle.

Jillflag% Integer value flag indicating if the circle
- should be filled or not. If True the circle
: will be filled with the foreground color.
(Note: This attribute is not supported in the
standard library driver.)
NOTE: When using a logical operator with this function only
XOR has and effect, and part of the circle may not be
displayed.
Example
x1! = 100
yl! = 100
radius! = 25
N colr& = bwEV(0).Gray

fillflag% = ©

retcode$ = gDrawCircle%(x1l!,yl!,radius!,colrk,,fillflag$)

13 -13

Library Functions

gDrawEllipse% Function

Action Draws an ellipse to the display.
Syntax gDrawEllipse%(x!/yl/,rx,ryl,colr& fillflagh)
Remarks The following parameters are passed to the function:
x1iyl! Single Integer values indicating the center
of the ellipse in pixels.
rx! Single Integer value indicating the x radius
of the ellipse in pixels.
ry! Single Integer value indicating the y radius
of the ellipse in pixels.
colr& Long Integer value indicating the
foreground color of the ellipse.
Sillflag% Integer value flag indicating if the ellipse

should be filled or not. If True the ellipse
will be filled with the foreground color.
(Note: This attribute is not supported in the
standard library driver.)

NOTE: When using a logical operator with this function only
XOR has and effect, and part of the ellipse may not be

displayed.
Example
x1l! = 100
yli = 100
rx! = 25
ry! = 15

colr& = bwEV(0).Gray
fillflag% = O

retcode% = gDrawEllipse$%(xl!,yl!,rx!,ry!,colr&, fillflag$)

13-15

Library Functions

gDrawLine% Function

&~ Action
Syntax
Remarks

_

A

Draws a line to the display.
gDrawLine%(x1%,y1%,x2%,y2%,colr&)
The following parameters are passed to the function:

x1%,y1% Integer values indicating the starting
position of the line in pixels.

x2%,y2% Integer values indicating the ending
position of the line in pixels.

colr& Long Integer value indicating the
foreground color of the line.

A solid line is the default line drawing style. To change the
line drawing style use the environment property
bwEV(0).Linestyle. The argument is a 16-bit integer mask
used to put pixels on the display. Use a hex value to adjust
the line style, some values are listed below:

&HCCCC Dotted ..,
&HFOFO Dashed
&HFF00 Wide Dash ----coecoooo.

The drawing line style is reset to solid & HFFFF after each
call to the line function.

To use a logical operator with a line drawing set the
environment property beEV(0).Logicoper.

0=PSET
1=0OR

2=AND
3=XOR

Note that the logical operator is reset to PSET after each call
and that Clipping and WCS are only in use with PSET.

13-17

EllTech Development, Inc.

Example
x1% = 100
yl% = 100
x2% = 300
y2% = 300

colr& = bwEV(0).White

retcode% = gDrawLine%(xl%,ylt,xz%,yz%,colr&)

13-18

Library Functions

gDrawPCXFile% Function

Action Loads and draws a 16 color PCX file to the display.

Syntax eDrawPCXFile% (filename$,x1%,y1%,x2%,y2%,border%, _
beolr&)

Remarks This procedure will load a 16 color raster image file which

has been saved in a PCX file format into a rectangular area on
the display. If the image rectangle boundary is smaller than
the image file, the image will be clipped. Note: The PCX
image file must be a 16 color format for proper operation. The
following parameters are passed to the function:

filename3

x1%,y1%

x2%,y2%

border%

beolr&

Example

String holding the PCX file name, the drive
and directory may be included.

Integer values indicating the upper left
corner of the image rectangle in pixels.

Integer values indicating the lower right
corner of the image rectangle in pixels.

Integer value indicating if a border should
be displayed around the image. Set to True
(-1) if you wish to have a border.

Long Integer value indicating the border
color

filename$ = "EGUIDEMO.PCX*

x1% = 100
yl% = 100
x2% = 300
y2% = 300

border$ = -1
bcolr& = bwEV(0) .Blue

'Draw a Border

retcode$=gDrawPCXFile% (filename$, x1%,yl%, x2%,y2%, bor

der%,bcolr&)

13-19

Library Functions

gDrawRect% Function

&~ Action
Syntax
Remarks

'

Draws a rectangle to the display.
gDrawRect%(x 1%,y 1%,x2%,y2%,colr&, fillflag%)
The following parameters are passed to the function:

x1%,y1% Integer values indicating the starting
position of the line in pixels.

x2%,y2% Integer values indicating the ending
position of the line in pixels.

colr& Long Integer wvalue indicating the
foreground color of the line.

JSillflag% Integer value indicating if the rectangle
should be filled or not. If True the rectangle
is filled with the foreground color.

A solid line is the default line drawing style. To change the
line drawing style wuse the environment property
bwEV(0).Linestyle. The argument is a 16-bit integer mask
used to put pixels on the display. Use a hex value to adjust
the line style, some values are listed below:

&HCCCC Dotted oo
&HFOFO0 Dashed
&HFF00 WideDash @ ------cmcma--

The drawing line style is reset to solid &HFFFF after each
call to the line function.

To use a logical operator with a line drawing set the
environment property beEV(0).Logicoper.

PSE
OR

AND
XOR

3

W N =
o

13-21

EllTech Development, Inc.

Note that the logical operator is reset to PSET after each call
and that Clipping and WCS are only in use with PSET.,

If the fillflag% parameter is True then the Linestyle and
Logicoper properties are ignored.

Example
x1% = 100
yl% = 100
X2% = 300
y2% = 300

colr& = bwEV(0).White
fillflag% = 0

retcode$ = gDrawRect%(x1%,y1%,x2%,y2%,colr&,fillflag%)

13

A,

Library Functions

gDrawText3D% Function

Action

Syntax

Remarks

Draws text to the display window using the pixel coordinate
method in a three dimensional format.

gDrawText3D%(col%,row%,text$,acckeypos¥,colrd)

This function uses the pixel coordinate method for locating
text on the screen. The text will be drawn using the active
environment font number. The following parameters are
passed to the function:

col% Integer value indicating the column to
display the text at. This may be any number
within the horizontal screen pixel resolution
(0-639).

row% Integer value indicating the line to display
the text at. This may be any number within
the vertical screen pixel resolution (i.e. for
screen mode 12 a number from 0-479, for
mode 9 a number from 0-349).

text$ String value indicating the text to draw
(max=80 characters).

acckeypos% Integer value indicating if the accelerator
key position, or set to O for none.

Example: File Name

colr& Long Integer value indicating the
foreground and shadow color to paint the
text, or -1 for the default color.

NOTE: Use the muliti color formula to set the color value.
Also if colr&=-1, bwEV(0).Gray and bwEV(0).Whit e are
used as the text color. To make the text transparent set
bwEV(0).FontTrans = -1.

13-23

EllTech Development, Inc.

See Also gSetEnvFontNum %
' 1
Example
col% = 100
row$ = 100
text$ = "Draw Text by 3D Method®
acckeypos% = 14
colrk = -1
retcode%:gDrawTextPix%(col%,row%,texts,acckeypos%,_
colrg)
-
e

13-24

Library Functions

gDrawTextCol% Function

& Action

Syntax

Remarks

Draws text to the display window using the mixed coordinate
method.

gDrawTextCol % (col%,row%,text$,acckeypos%s,colr&)

This function uses a mixed coordinate method for locating
text on the screen. The text will be drawn using the active
environment font number. The following parameters are
passed to the function:

col% Integer value indicating the column to
display the text at. This must be a number
from 1-80. If col% is outside the range, the
function will return an error code of 50
(Over Flow) and no text will be displayed.

row% Integer value indicating the line to display
the text at. This may be any number within
the vertical screen pixel resolution (i.e. for
screen mode 12 a number from 0-479, for
mode 9 a number from 0-349).

text$ String value indicating the text to draw
(max=80 characters).

acckeypos% Integer value indicating if the accelerator
key position, or set to O for none.

Example: File Name

colr& Long Integer value indicating the
foreground and background color to paint
the text, or -1 for the default color.

NOTE: Use the multi color formula to set the color value.
Also if colr&=-1, bwEV(0).FontForeColr . and
bwEV(0).FontBackColr are used as the text color. To make
the text transparent set bwEV(0).FontTrans = -1.

13-25

EllTech Development, Inc.

See Also gSetEnvFontNum%

Example
cols = 10
rows = 100

text$ = *Draw Text by Column Method"
acckeypos% = 14
colrs& = (bwEV(0).Black + (bwEV (0) .Gray * 256)

retcode%:gDrawTextCol%(col%,row%,texts,acckeypos%,_
colrk)

13-26

Library Functions

gDrawTextPix% Function

o Action

Syntax

Remarks

Draws text to the display window using the pixel coordinate
method.

gDrawTextPix% (co!%,row%, text$,acckeypos%,colr&)

This function uses the pixel coordinate method for locating
text on the screen. The text will be drawn using the active
environment font number. The following parameters are
passed to the function:

col% Integer value indicating the column to
display the text at. This may be any number
within the horizontal screcn pixel resolution
(0-639).

row% Integer value indicating the line to display
the text at. This may be any number within
the vertical screen pixel resolution (i.e. for
screen mode 12 a number from 0-479, for
mode 9 a number from 0-349),

text$ String value indicating the text to draw
(max=80 characters).

acckeypos% Integer value indicating if the accelerator
key position, or set to O for none.

Example: File Name

colr& Long Integer value indicating the
foreground and background color to paint
the text, or -1 for the default color.

NOTE: Use the multi color formula to set the color value.
Also if colr&=-1, bwEV(0).FontForeColr and
bwEV(0).FontBackColr are used as the text color. To make
the text transparent set bwEV(0).FontTrans = -1.

13-27

EllTech Development, Inc.

See Also gSetEnvFontNum%
Example
col% = 100
rows = 100
text$ = °"Draw Text by Pixel Method®

acckeypos% = 14
colr& = (bwEV(0).Black + (bwEV(0).Gray * 256)

retcode%:gDrawTextPix%(col%,row%,texts,acckeypos%,_
colrk)

13 -28

Library Functions

gDropDownBox% Function

. Action
Syntax

Remarks

Displays a Pop-Up List Box for the user to select and item
from.

gDropDownBox% (cx!%,cy!%,Selecteditem$, ItemList§ (),
reserved%)

This procedure functions much like a control, except that it is
only visible while it has the focus. After calling the procedure
a Pop-Up Box will appear at the specified location with a list
of items for the user to select from. If the user clicks the
mouse outside of the list box on another control or presses the
ESC or ENTER key the box will Pop-Down returning to the
calling procedure. While the Pop-Up List Box has the focus it
functions the same as a standard list box. Important: In
addition to the parameters passed to this procedure the Edit
Box Properties are also used to control and configure a
Pop-Up List Box. See the example below for more
information.

x1% Integer values indicating the column to
display the Pop-Up List Box. This should
be a value between (1-79). Note: A4
Pop-Up List Box may be placed outside of a
Dialog Box Border.

yi% Integer values indicating the upper left
corner row of the Pop-Up List Box in pixels.

Selectedltem$ String holding the sclected item if the enter
key is pressed. Note: If the List Index
Pointer is need it will be in the property
bwLB(0).aptr on return.

ItemList$() Variable Length String Array holding the
list of Items to select. This array must be
dimensioned prior to calling the procedure.
Also the each element of the array should be
padded to the same length.

Reserved% This variable is reserved for futufe use.

13-29

EllTech Development, Inc.

Example

'Thi's procedure places a Pop-Up List Box 50 pixels inside of
‘the upper left corner of the Dialog Box

cxl%s = x1% + 50

cyls

bwEC(0) .col
bwEC(0) . row
bwEC(0).dlen

yl% + S0

(cx1% / 8)
cyl%
12

bwEC(0) .num2disp = 3

REDIM ItemList$(5)

= "First Item

= "Second Item
= "Third Item

ItemList$(1)
ItemList$(2)
ItemList$(3)
ItemList$(4)
ItemList$(5)

retcode$ = gDropDownBox%{(cxl$%,

"Fourth Item
"Fifth Item

"

"

'x1%,yl% is upper left corner
'of Dialog Box

'Use the Edit Box Properties
tconfigure the Pop-Up List Box

'List should be padded
'to equal lengths

cyl%, SelectedItem$,
ItemList$({), reserved?)

13 -30

-~

Library Functions

gGetCurrentPath% Function

Action Get the currently active Drive and Directory Path.
Syntax gGetCurrentPath%CurrentPath$)
Remarks The following parameters are return from the function:

CurrentPath$ String with the current active drive and
directory.

Error If an Error occurs the DOS Error code will be returned.

Example

retcode% = gGetCurrentPath% (CurrentPath$)

13-31

Library Functions

gGetDirDrvList% Function

. Action Get a list of directories which exist in the currently active
directory path, and a list of valid drives.

Syntax gGetDirDrvList%DirList3(), DirSpec$,Sortflag%)

Remarks The DirList$ array must be dimensioned before calling the
function with the REDIM statement. The maximum
directories that may be returned is 112. The following
parameters are passed to the function:

DirList$ An array to hold the list of directories and
drives which will be returned.

DirSpec$ A String indicating the directory search
parameters.
Sortflag% Integer value indicating if sorting should be
N performed on the array. Set to -1 if you
want to sort the array ascending and -2 for
sorting the array descending.
Example
REDIM DirList$(0)
DirSpec$ = "*.*
Sortflag% = 0
retcode% =
gGetDirDrvList$%(DirList$(),DirSpec$, Sortflags)
P

13-33

Library Functions

gGetDIbClick% Function

. Action Get a mouse double click action if it occurs in the click area
during the double click duration time.

Syntax gGetDIbClick%(x1%,y1%,x2%,y2%, buttonnumber)
Remarks The following parameters are passed to the function:
x1%,y1% Integer values indicating the upper left

corner of the click area in pixels.

x2%,y2% Integer values indicating the lower right
corner of the click area in pixels.

buttonnumber% Integer value indicating the mouse button
number to watch.

0=Left Button
- 1=Right Button
2=Middle Button (If Present)

Example
x1% = 100
yl% = 100
x2% = 300
y2% = 300

buttonnumber$ = 0

retcode%$=gGetDlbClick% (x1%,yl%,x2%,y2%, buttonnumber%)

13-35

Library Functions

gGetFileList% Function

Action Get a list of files which exist in the currently active directory
path.

Syntax gGetFileList%(FileList$(),FileSpec$,Sortflag)

Remarks The FileList$ array must be dimensioned before calling the

function with the REDIM statement. The maximum files
that will be returned is 512. The following parameters are
passed to the function:

FileList An array to hold the list of files which will
be returned.

FileSpec$ A String indicating the file search
parameters.

Sortflag% Integer value indicating if sorting should be

performed on the array. Set to -1 if you
want to sort the array ascending and -2 for
sorting the array descending.

Example
REDIM FileList$(0)
FileSpec$ = **.*
Sortflag = 0
retcode% =

gGetFileList% (FileList$ () ,FileSpec$, Sortflag$)

13-37

Library Functions

gGetlmage% Function

#~ Action Gets a image from a rectangular area of the display.
Syntax gGetImage% (x1%,y1%,x2%,y2%,array%())
Remarks The image array must be smaller than 32k. The following

parameters are passed to the function:

x1%y1% Integer values indicating the upper left
corner of the area to capture in pixels.

x2%,y2% Integer values indicating the lower right
corner of the area to capture in pixels.

array%() Integer array to hold the image information.
This array must be dimensioned large
enough to hold the image. Use the formula
below to calculate the proper size.

Py
Image Array Formula:
asize%=4+INT(((x2%-x1%+1)*1+7)/8)*4*((y2%-y1%)+1)
Example
x1% = 100
yig = 100
x2% = 200
y2% = 200
asz%=4+INT(((x2%-x13+1)*1+7)/B)*4*((y2%-yl%)+1)
REDIM array$%(asz%)
A

retcode$ = gGetImage$ (x1%,yl%,x2%,y2%,array$())

13-39

Library Functions

gGetKeyPress% Function

M Action
Syntax
Remarks
Example

Get the current key press. if any, that exists in the keyboard
buffer.

gGetKeyPress%

This function returns the actual key code that was pressed, or
a -1 if the ALTKEY is pressed. If the key press is an extended
key, such as ALT-L then a negative key scan code is returned,
for example:

ALT-L =-38
ALT-C = -46

NOTE: If the ALT KEY is being pressed while the function is
being called, it will not return control to the calling procedure
until the key is released.

‘Check For Key Press --------------—------——--
KeyPressy = gGetKeyPress$%
IF KeyPress$% <> 0 THEN ‘Process Key Strokes
'PLACE CODE TO TAKE ACTION ON HERE
END IF

13-41

Library Functions

gGetMouse% Function

Action

Syntax

Remarks

See Also

Example

Return the current vertical and horizontal pixel location of the
mouse and which button is being pressed.

gGetMouse % (mx%,my%,mb%)

To process mouse events you must no the location and button
status of the mouse prior to taking action. There are no
parameters passed to this procedure, only returned.

NOTE: The gGetMouse% parameters mx%,my%,mb% are
global to the EGUI System, so information returned from a
get should be used immediately following the call or the
information may change.

mx% Integer value indicating the horizontal pixel
location of the mouse.

my% Integer value indicating the vertical pixel
location of the mouse.

mb% Integer value indicating which mouse
button, if any, are currently being pressed.

1=Left Button
2=Right Button
3=Middle Button (If Present)

gShowMouse%,gHideMouse%

retcode% = gGetMouse% (mx%,my%, mb%)

13-43

gGetSysFontHgt% Function

&~ Action Gets the current EGUI System font height in pixels.
Syntax gGetSysFontHgt % (fontnumberss)
Remarks Gets the current active system font height which has been set
by gSetEnvFontNum%. The System font width is always 8
pixels.

Jonmumber% Integer value holding the current font
height in pixels.

See Also gSetEnvFontNum%
—_—
Example
retcode% = gGetSysFontHgt$ (fontnumber$)
A

13-45

Library Functions

gHandMouse% Function

o Action

Syntax

See Also

Example

Set the mouse pointer to a hand cursor.

gHandMouse%

t

gStandardMouse% ,gHourGlassMouse%o

retcode® = gHandMouse%

13 -47

Library Functions

gHideMouse% Function

. Action
Syntax

Remarks

= See Also

Example

Turn the mouse cursor off,
gHideMouse%

The mouse cursor must be turned off before displaying
something to the screen.

NOTE: All EGUI display functions and controls are mouse
sensitive and DO NOT require hiding or showing the mouse
cursor before or after a call. However any procedurc used,
that does a direct write to the display should turn the mouse
on & off during the writes.

gShowMouse % ,glnstallMouse%

retcode$ = gHideMouse$%

13 -49

EllTech Development, Inc.

13-50

Library Functions

gHourGlassMouse% Function

Action Set the mouse pointer to a hourglass cursor.

Syntax gHourGlassMouse%

X

See Also gStandardMouse%,gHandMouse%o

Example

retcode% = gHourGlassMouse$

13 - 51

EllTech Development, Inc.

13 -52

Library Functions

glnitBWSystem % Function

o, Action Initialize the EGUI Environment System.
Syntax ginitBWSystem%
Remarks The EGUI Environment System must be initialized before

any calls to the GUI Library are made.

NOTE: This code will be built by the EGUI Form Generator
when you click the Build Module button on the Build Form
Function Window.

Example

retcode% = gInitBWSystem%

13-563

Library Functions

gInstallMouse% Function

Action

Syntax

Remarks

See Also

Example

Check for the existence of the mouse and reset the mouse
driver to its' default startup parameters.

glnstallMouse%o
The mouse must be installed prior to making any calls to the

mouse driver. A mouse install is done during the EGUI
System Install and is usually not required at any other time.

gShowMouse%,gHideMouse% ,gGetMouse%

retcode% = gInstallMouse%

13-55

i

EllTech Development, Inc.

13-56

Library Functions

gloadlcon% Function

& Action Load and display an icon file.
Syntax gloadlcon%(filename$,x1%,y1%,,logicflag%)
Remarks The following parameters are passed to the function:
filename$ String indicating the file name, and optional

path, of the icon to load and display.

x1%y1% Integer values indicating the upper left
corner to position the icon on the display, in
pixels.

logicflag% Integer value if the icon should be displayed

using a logical operator. Available values
are listed below:

- 0=PSET
1=PRESET (Reverse Image)
2=0R
3=AND
4=XOR

NOTE: The logical operator is reset to PSET after each call

to the function.
Example
filename$ = "EDIT.ICN"
ix1% = 100

iyl% = 100
logicflag® = 0

PN retcode% = gLoadIcon%(filename$, ix1%,1iyl%, logicflag%)

13 -57

ENlTech Development, Inc.

13 - 58

Library Functions

gLoadSysCfgFile% Function

. Action

Loads the EGUI System Initialization file (EGULINI).
gLoadSysCfgFile% (filename$)

The EGUI System must be configured before use. Loading
the system initialization file sets many of the System
Environment Properties and File Paths, Note: This process is
done in the gInitBWSystem% procedure and is normally not
called again. (See System .INI File Format in Chapter 8 for
more information.)

filename$3 String value holding the System
Initialization File Name EGULINI.

filename$="EGUI.INI"
retcode% = gLoadSysCfgFile%(filename$)

Syntax

Remarks
A~

Example
-

13 -59

Library Functions

gLoadSysFont% Function

& Action Loads the EGUI System Font file (BWSYS.FNT).
Syntax gLoadSysFont% (SysPathinfo§)
Remarks The EGUI System Font File must be loaded prior to using any

fonts. Note: This process is done in the gInitBWSystem%
procedure and is normally not called again.

SysPathInfo$ String value holding the System Path
Information. Example: "C\EGUI"

= Example

SysPathInfo$=*C:\EGUI"
retcode% = gLoadSysFont%(SysPathInfoS)

13 - 61

Library Functions

gMessageDialog% Function

Action

Syntax

Remarks

Displays a Dialog Box Window with a Message and prompts
the user for an OK Retry or Cancel reply.

gMessageDialog% (messagelist$(),messfontlist%(),

messtitle$, messtype%)

Use this procedure to display a short message and prompt the
user for a simple reply.

messagelist$

messfontlist%

messtitle$

messtype%

Variable length message string array, a
maximum of 42 characters per element.
This array must be dimensioned prior to
calling the procedure.

Integer array which coincides with each
element of the message string array and
selects the system font type to use with each
line. This array must be dimensioned prior
to calling the procedure.

A message box title.

This flag is used to select the type of
message box desired.

Type Icon Displayed Button

1 Information OK

2 Warning OK

3 Critical Retry,
Cancel

4 Error OK

5 NO ICON OK,
Cancel

6 NO ICON Yes, No

Note: A Custom Icon can be displayed by
making the type negative. Place the Icon
File Name to be displayed in
messagelist$(0) with the full path of the file.

13 -63

EllTech Development, Inc.

Example:

messagelist$(0)=C:\ICON\CUSTOM.ICH
messtype$=-6 '‘Display Yes,HNo —
Buttons

Example

messtitle$ = *File Message"

messtype$ = 1 'Information Icon with OK
Button

REDIM messagelist$ (3)

messagelist$(l) = "This is line one.’
messagelist$(2) = *This is line two."*
messagelist$(3) = *This is line three.®

REDIM messfontlist%(3)

messfontlist$(l) = 2 '8x14 Normal
messfontlist%$(2) = 2 ‘8x14 Normal
messfontlist%(3) = 2 '8x14 Normal

retcode%:gMessageDialog%(messagelists(),messfontlist%(),_
messtitle$,messtype%)

13 - 64

Library Functions

gMouseCheck% Function

Action

Syntax

Remarks

See Also

Example

Check for mouse to make sure no buttons are currently being
pressed.

gMouseCheck%

This procedure will not return control to the calling procedure
until no mouse button is being pressed.

gShowMouse%,gHideMouse%,gMouseFunc%

retcode$ = gMouseCheck$%

13-65

Library Functions

gMouseFunc% Function

. Action Call a mouse service routine.
Syntax gMouseFunc % (im1%,m2%,m3%,m4%)
Remarks This procedure allows you to call any mouse service routine

that is available through the mouse driver.

See_the Microsoft Mouse Programmers Guide for more
information on calling mouse services.

See Also gShowMouse%,gHideMouse % ,gMouseCheck %
Example
! ‘This service sets the mouse range for VGA mode
640x480
ml% = 7 'Function Number 7
m2% = 0 ‘NOT Used
m3% = 0 ‘Upper Left Corner
m4% = 0
retcode$ = gMouseFunc% (ml%,m2%,m3%,m4%)
ml% = 8 'Function Number 8
m2% = 0 'NOT Used
m3% = 639 'Lower Right Corner
m4% = 479
retcode% = gMouseFunc$ (ml%,m2%,m3%,m4%)
A—

13 -67

Library Functions

gPaint% Function

& Action Paints an area on the display.
Syntax gPaint%(x1%,y1%,colr&)
Remarks This procedure will fill an area on the display with the

selected color starting at the selected point. Painting is
complete when a line is painted without changing the color of
any pixels. The following parameters are passed to the

function:
x1%,y1% Integer values indicating the starting
position in pixels.
colr& Long Integer wvalue indicating the
foreground color to paint.
o~
Example
x1% = 100
yls = 100
colr& = bwEV(0).Red
retcode% = gPaint%(x1%,yl%,colr&)
—_—

13-69

Library Functions

gPercDoneBarA% Funclion

& Action
Syntax
Remarks

A
—

Draw a percentage done bar to the display.

gPercDoneBarA % (px 1% pyi%,pwid%,CurVal!, TotVal!,

Textcolr&, Barcolr&, Border%s)

Use this procedure as a progress indicator when the process
being performed will require more than a few seconds. This
let the user know what is going on and when the process will

be complete.

px1%,py1%

pwid%

CurVal!

TotVal!

Textcolr&

Barcolr&

Border%

Integer values indicating the upper left
corner of the rectangle in pixels.

Integer value indicating the width of the
rectangle in pixels.

Single value indicating the current process
value.

Single value indicating the total count of the
process.

Long Integer value indicating the text color.
This is a multi color formula. The first color
will be used for the first 50% of the process
and the second color for the second 50%. If
you want the same color through out the
process use the same color twice.

Long Integer value indicating the bar color.
This is a multi color formula. The first color
will be used for the first 50% of the process
and the second color for the second 50%. If
you want the same color through out the
process use the same color twice.

Integer value indicating if a border should
be drawn. If the border is drawn it will use
the bwEV(0).Outlinecolr property for the
color.

13-71

ElNTech Development, Inc.

Example
'SetUp LOOp Parameters ----———-—--——-----=--meooo—oo——os - oo
pxl% = 100
pyl% = 100
pwids = 256
Curval! = 0
TotVal! = 50

textcolrs = (bwEV(0).White + (bwEV(0).Black * 256))
barcolri = (bwEV(0).LightBlue + (bwEV(0).White * 256))
borders = -1 ‘Draw Border

FOR CurVal! = 1 TO TotVal!

3222222222232 2222222222222 222220 R 2R 2aliassiiststalldsd

‘Put Your Process Here
B 1222y A A R A e R R a2 222 il

'Display Percentage Done ----—--=-==--—--=—--————-ooooo——oon=

retcode$ = gPercDoneBarA% (px1%, pyl$%, pwid%, CurVal!,
Totval!, _ textcolrs,
barcolr&, border$)

FOR g% = 1 TO 12000 'This pause for Demo Only
NEXT g% ‘Remove for actual use

NEXT CurVal!

13-72

Library Functions

gPutlmage®% Function

Action

Syntax

Remarks

See Also

Puts an image that has been gotten by gGetImage% to the

display.

tImage % (x1%.,y1%,x2%,y2%,array%(),logicflag%,)
g

The image must have been gotten by the get procedure prior
to calling this procedure. The following parameters are

passed to the function:
x1%,y1% Integer values indicating the upper left
corner of the area to in pixels.
x2%,y2% Integer values indicating the lower right
corner of the area to in pixels.
array%() Integer array holding the image
information.
logicflag% Integer value indicating the logical
operation to perform on the image.
0=PSET
1=OR
2=AND
3=XOR
gGetlmage%

13-73

EllTech Development, Inc.

Example
x1% = 100
yl% = 100
x2% = 200
y2% = 200

asz%=4+INT(((x2%-xX1%+1)*1+7)/8)*4* ((y2%-yl%)+1)
REDIM array$ (asz$)
retcode% = gGetImage%®(x1%,yl%,x2%,y2%,array%(})

logicflag%=0
retcode$ = gPutImage%(xl%,yl%,xz%,y2%,array%(),logicflag%)

13-74

Library Functions

gReStartMouse% Function

Action Restart the Mouse Driver and restore mouse settiflgs.

Syntax gReStartMouse % (imousebuffer$)

Remarks Use this procedure to enable the mouse driver and restore the
mouse buffer settings. The following parameters are passed
to the procedure:

mousebuffer§ A copy of the current mouse buffer settings.

NOTE: The function gStopMouse% must be called prior to
calling gReStartMouse% to get a copy of the mouse buffer
for restoring the mouse.

See Also gStopMouse%

Example

‘Stop the Mouse and get a copy of its' settings
retcode% = gStopMouse% (mousebuffers$)

'PLACE YOUR CODE HERE

'Restore the mouse with the setting saved
retcode$ = gReStartMouse% (mousebuffers$)

13-75

EllTech Development, Inc.

13-76

Library Functions

gRemoveDialogBox% Function

Action Use this function to remove the currently active Dialog Box
and it's control objects from the object list.

Syntax gRemoveDialogBox%

Remarks When closing a Dialog Box you must remove it from the
screen and erase all of the dialog box control objects from the
object list. This should be done in the local exit section of a
window, before exiting the function. The exit section is
located at the end of the DBFormat Main Body.

See Also gBuildDialogBox%

Example

retcode% = gRemoveDialogBox$%

13-77

EllTech Development, Inc.

13-78

Library Functions

gSetEnvFontNum% Function

o Action
Syntax
Remarks

A~
Example

_—

Set the active environment font type.
gSetEnvFontNum% (fontnumber%)

Use this procedure to select one of the seven different system
font types.

Jontnumber% Integer value (0-6) which indicates the
system font to select.

0=8x16 Bold (Large)
1=8x14 Bold (Med)
2=8x14 Normal

3=8x14 Italic

4=8x8 Bold (Small)
5=8x8 Normal

6=8x8 Italic

NOTE: The EGUI font system requires a VGA video display
adapter or better. If a EGA adapter is active only font 1 and 4
will be available.

fontnumber$ = 2 '8x14 Normal
retcode% = gSetEnvFont$% (fontnumber$%)

13-79

EllTech Development, Inc.

13 - 80

Library Functions

gSetMouseRange% Function

o Action

Syntax

Remarks
V

Example
-

Set the mouse movement range.

gSetMouseRange % (x1%,y1%,x2%,y2%)

Use this procedure to select one of the seven different system

font types
x1%,v1%
x2%,y2%
x1l% = 0
yis = 0
x2% = 639
y2% = 479
retcode%

Integer values indicating the top left corner
of the mouse range in pixels.

Integer values indicating the bottom right
corner of the mouse range in pixels.

= gSetMouseRange% (x1%,yl%,x2%,y2%)

13-81

EllTech Development, Inc.

13 -82

Library Functions

gSetPDMenu% Function

Action

Syntax

Remarks

See Also

Use this function to setup a Pul! Down Menu Control in the
Draw Dialog Box Section of the DBFormat before calling the
Pull Down Menu Control.

gSetPDMenu % (menuitems$ (), menustatus%(),menuacckey?s()

Pull Down Mcnu items are placed in and array named
menuitems$ which you must dimension to the correct
maximum menu size prior to assigning items. The variable
NumofSelection% is used to dimension a multidimensional
array for the pull down list. This variable should be adjusted
to a size large enough to accommodate the largest list,
however make sure that when the list is pulled down it does
not extend past the Dialog Box borders.

The other variable used to dimension the item array is
NumofMenus% which sets the total number of menu lists.

Use menustatus% array 1o set an item active (-1) or inactive
(0), and menuacckey% to set and items accelerator key.

Note: See the sample code under gPullDownMenu% Control
in Chapter 12 for and example on how to use this procedure.

gPullDownMenu%

13-83

EllTech Development, Inc.

13-84

Library Functions

gSetVideoMode% Function

Action
Syntax

Remarks

Example

Vmode$%

Sets a Graphics Display Mode.

gSetVideoMode% (Vinode%, CirScrflag%)

This procedure will set the display to a Graphics Mode. The
following parameters are passed to the function:

Vmode%

ClrScrflag%

= 12

ClrScrflag% = -1
retcode% = gSetVideoMode% (Vmode%,ClrScrflag$)

Integer values indicating the Graphics
Video Mode to set. There are only two legal
modes supported in the EGUI Standard
Video Driver Library.

Mode 9 EGA 16 Color 640x350
Mode 12 VGA 16 Color 640x480

Integer value indicating if the display
should be cleared during the set process.
Set to True (-1) to have the display cleared.
Note: This setting is ignored by the EGUI
Standard Video Driver Library and the
display is always cleared.

'VGA 640x480 16 Color Mode

13-85

Library Functions

gShowMouse% Function

-, Action Turn the mouse cursor on.
Syntax gShowMouse%
Remarks The mouse cursor should_ be turned on after displaying

something to the screen.

NOTE: All EGUI display functions and controls are mouse
sensitive and DO NOT require hiding or showing the mouse
cursor before or after a call. However any procedure used,
that does a direct write to the display should turn the mouse
on & off during the writes.

= See Also gHideMouse%o,gInstallMouse%

Example

retcode% = gShowMouse%

13-87

EllTech Development, Inc.

13 -88

Library Functions

gStandardMouse% Function

. Action Set the mouse pointer to the standard up arrow cursor.

Syntax gStandardMouse %

X

See Also gHandMouse%.gHourGlassMOuse%

Example
Y retcode% = gStandardMouse?

13-89

Library Functions

gStopMouse% Function

Action Disable the Mouse Driver and save the current mouse
settings.

Syntax gStopMouse % (mousebuffers$)

Remarks Use this procedure to disable the mouse driver and save the

mouse buffer settings. The following parameters are returned
from the procedure:

mousebuffer§ A copy of the current mouse buffer settings.

NOTE: The function gStopMouse% must be called prior to
calling gReStartMouse% to get a copy of the mouse buffer
for restoring the mouse.

See Also gReStartMouse%

Example

‘'Stop the Mouse and get a copy of its' settings
retcode$ = gStopMouse% (mousebuffers$)

'PLACE YOUR CODE HERE

'Restore the mouse with the setting saved
retcode% = gReStartMouse$ (mousebuffer$)

13-91

EllTech Development, Inc.

13-92

Library Functions

gTitleBar% Function

= Action
Syntax

Remarks

Draws or Updates a Title Bar for a Dialog Box.

gTitleBar%(x!%,y1%,x2%,y2%,0prflag%.,title$)

The following parameters are passed to the function:

x1%y1%

x2%,y2%

oprflag%

title$

Integer values indicating the top left corner
of the Dialog Box, in pixels.

Integer values indicating the bottom right
corner of the Dialog Box, in pixels.

Integer value indicating which operation to
perform. There are three possible
operations:;

0 = Draw Title Bar w/Active Dialog Box
Color

-1 = Draw Title Bar w/InActive Dialog Box
Color

-2 = Update Title Bar Text

NOTE: Operations 0 and -1 are used by
gBuildDialogBox% function to build a
Dialog Box Title Bar, these operations
should usually not be needed. The primary
usage of this function is to Update the Title
Bar with new text (Operation -2).

A string of text to be displayed in the Title

Bar. This text will be centered inside of the
Title Bar.

(see next page fbr example)

13-93

EllTech Development, Inc.

Example
x1% = 100
y1l% = 100
x2% = 400
y2% = 300
oprflagt = -2 ‘Update Title Bar Text

title$ = "Title Bar Text*®

retcode$ = gTitleBar%(xl%,yl%‘xz%,yz%,oprflag%,titles)

13-94

EGUI Toolkit

Appendix
 '

Appendix A

Object Oriented Programming Techniques

The Microsoft BASIC language is not an Object Oriented Language, however
many of the procedures and the BASIC data types which are available will
allow for the development of object oriented code. In fact the primary scope of
object oriented programming is to organize your software in a collection of
discrete objects that incorporate both data structures and behavior, The
advantage of using a true object oriented language is that a great deal, if not all,
of the additional coding necessary to write an object oriented program in a
non-object oriented language is handle by the compiler in the object oriented
language.

There are many gains in programming applications using object oriented
techniques. Unfortunately there is also some overhead involved when using a
non-object orient language. This sometimes discourages conventional
programmers from using object oriented techniques. Something important to
remember; Object Oriented Programming Techniques are really no more than
extensions to Structured Programming Techniques, which the MS BASIC
language supports fullyy. So if you are comfortable with structured
programming you will enjoy object oriented programming.

The reason we make reference to this is because the EGUI System uses a great
deal of Object Orient Programming Techniques. Please understand that there
are to many OOPs techniques to try and cover in this manual. What we want to
do is cover some of the techniques used in the EGUI System so you may
understand the system better. It is recommended that if you wish to use OOPs
techniques for developing your application you should get a good reference
manual on the subject, preferably one that refers to object oriented techniques
for non-object oriented languages, their are several.

Important: Using the EGUI System does not require the use of OOPs
Techniques, but using them will enhance the development of your software.

The following information is directed at programmer using OOPs Techniques
so some of the terminology may be foreign to someone not familiar with this
type of programming.

We would like to begin by saying that all the User Defined Structures in the
EGUI System Include files are perceived as Classes. The EGUI Environment
structure is the Super Class of the Control Classes. The Control Classes are
subclasses and have their own unique structure depending on the characteristics

EllTech Development, Inc.

of the control. Note that some controls share a class, such as the check box and
option button controls share the command button class.

The control properties are attributes of the control classes. Some of the
properties are associated properties (i.e. paintobj, addobj, etc.). These
properties share the same functionality and characteristics, however their actual
property values are isolated by their prospective classes.

Most of the procedures found in the library are consider methods. One key
feature missing from the BASIC library is the ability to get a pointer to a
function procedure. This makes the selection of methods a little more difficult,
but you may use a case statement to some what emulate this process.

If you would be interested in more information about the different OOPs
techniques used in the EGUI Library please let us know.

Appendix B

Custom Controls

You may write your own custom control to use with the EGUI System. The
process of writing a custom control is a little complicated so we have elected to
spend a little more time documenting this process in a sperate document. This
documentation should be available in the very near future.

If you have the need to write a custom control before this documentation is
finished download the source code module EGUIICON.BAS from the BBS and
take a look at the procedure gPaintICNGraph%. this is a custom control.
You may also analyze the source code from the EGUI System Library.

Important: Please remember that we supply the source code-for the EGUI
System Control Objects, however if you need to modify this code please make a
copy of the code and modify the copy.

EllTech Development, Inc.

Appendix C

Utilities

¢ CM.EXE (Compiler Manager)

This utility program is very similar to Microsoft's NMake utility. It
will allow you to compile and link your application from the command
line and it will only recompile the files which have changed since the
last compile. If you are building large application with BASIC this
utility can be very handy. You are free to use this utility with any
programming you may be doing not just when you are working with
the EGUI System Library.

To get a Help Screen for the Compiler Manager type CM /H at the
command prompt and the following screen should appear.

Compiler Manager Ver 2.01
CopyRight (c) 1989-1891, Mike Bishop, All Rights Reserved.

Syntax: CM [/H /C /L /N] filename or MAK filename

/H - Display Compiler Manager Help Screen
/C - Compile ONLY! Process

/L - Link ONLY! Process

IN - NO Validation Checking

NOTE: If NO parameters are passed to CM on the command line it will
use the first MAK file in the active directory to compile and link.
If no MAK file is found CM will abort. If a filename or MAK filename
has been passed it will be used. CM first checks for a CM.CFG file
in the active directory, if not present the DOS Environment is
searched
for CMMAIN.CFG file and that configuration is used. See CM's
Documentation for the use of CM.CFG & CMMAIN.CFG.

The /N switch will force a recompile with no checking of the
Date & Time Stamps of the source & object files.

The CM configuration file is used to set the compile and link
configuration information. Note: CM requires a copy of the
configuration file to run. See the information below about how to
configure the configuration file.

EllTech Development, Inc.

Note: The CMMAIN.CFG and the CM.CFG files use the same format.
The main configuration is used as a default if the local configuration is
not present.

COMPILER=D:\BCT\BIN\BC

The location of the BASIC Compiler you want to use to do the current
compile.

BCOPTS=/E/X/O/AH/Fs/FPi/G2/Lr/Ot/S
The switches you want to use with the compiler.

LINKER=D:\BCT\BIN\LINK
The linker you wish to use for the current link.

LINKOPTS=/EX/NOE
The linker options to use.

LINKLIBS=EGUIBC7F+COMPRESS;
The library names of any libraries you want to be searched for during
the link process.

[EXENAME-=filename.exe]
The executable file name to assign to the program. This is optional. If
not present the MAK or .BAS filename is used.

[STUBFILE=NOCOM+NOLPT+NOEMS)]
The name(s) of any BASIC Stub Files you wish to use with the link
process. This is optional.

[OVERLAY=module.bas]

The name of any files which should be overlayed. This is optional.
Note: This option is only compatible with MS PDS 7.x, it should not
be used with any other linkers.

Appendix C

+ PCX2ICN.EXE

This utility may be used to convert a 16 color PCX image file to an
EGUI .ICN file format.

Syntax:

PCX2ICN filename.PCX filename ICN

Important: The largest and icon image may be is 32k, so if the icon
image is larger the process will abort.

